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Postponed equalities

Let’s try to solve:

(α true, (t, γ)) =? (β true, (u, true))

at type (A : Type)× (A × Bool), where α, β, γ are metavariables.

1 We can’t solve α true =? β true now but it could become uniquely solvable later. We
postpone

2 Now (t, γ) and (u, true) have different types. How to proceed?
3 At least, we’d like to immediately solve γ =? true, where the types are the same.
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Existing solutions

• Make no progress; block the rest of the unification problem.

• Rocq: ignore mismatched types and proceed. Unification is unsound, but the final
elaboration output gets re-checked.

• Agda: anti-unification. Questionable.1
• Lean & Idris?
• In works by Gundry, McBride and López: heterogeneous

unification [GM13,Gun13, Jua21]. A bit more on this later.

1antiUnify in
https://github.com/agda/agda/blob/master/src/full/Agda/TypeChecking/Conversion.hs
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Observational Equality

Let’s make the postponed equality observational.

(α true, (t, γ)) =? (β true, (u, true)) : (A : Type)× (A × Bool)

1 Try to solve α true = β true.

2 Postpone: we extend the metacontext with p : α true = β true.
3 Try to solve coe(α true×Bool) (β true×Bool) (t, γ) =? (u, true).
4 Compute to (coe(α true) (β true) t, γ) =? (u, true).
5 coe(α true) (β true) t =? u may or may not go through, but γ =? true produces a solution.
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Overview

We use bidirectional elaboration with normalization-by-evaluation:

Presyntax
−→ Core syntax + values + metavariables + postponed problems (“partial core”)
−→ Core syntax + values (“total core”)
−→ ...

We use a stripped-down version of Pujet and Tabareau’s OTT [PT22]

We don’t have: user-facing observational features, term language for proofs, propositions
besides equality.

WIP implementation that’s planned to be “production-strength”2.

2https://github.com/AndrasKovacs/2ltt-impl

https://github.com/AndrasKovacs/2ltt-impl
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Issue 1: reflexive coercion

OTT supports the conversion rule coeA A t = t. How to implement it?

In prior work: coe−refl is not computed during reduction or evaluation, it’s only computed
during conversion checking [SLK24,PT22].

Instead, I compute eagerly during evaluation.
• Hanging on to coercions feels risky for value/term size.
• In our case, all coercions must be computed away eventually.

This requires threading a fresh De Bruijn level through evaluation, because conversion
checking can go under binders.

Haskell trick3: functional closures with type (?lvl :: Int) => Value -> Value

3https:
//downloads.haskell.org/ghc/latest/docs/users_guide/exts/implicit_parameters.html

https://downloads.haskell.org/ghc/latest/docs/users_guide/exts/implicit_parameters.html
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Issue 2: η-short coercion

Unlike in prior OTT works, coercion shouldn’t η-expand!

η-long coercion for non-dependent functions:

coe(A→B) (A′→B′) t = λ x. coeB B′ (t (coeA′ A x))

η-short coercion only computes on canonical values:

coe(A→B) (A′→B′) (λ x. t) = λ y. coeB B′ (t[x 7→ (coeA′ A y)]

To retain syntax-directed η-conversion, function application must explicitly handle coerced
neutral functions:

(λ x. t) u = t[x 7→ u]
(coe(A→B) (A′→B′) n) u = coeB B′ (n (coeA′ A u))
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Issue 2: η-short coercion

For pairs:

coe(A×B) (A′×B′) (t, u) = (coeA A′ t, coeB B′ u)
(t, u).fst = t
(coe(A×B) (A′×B′) n).fst = coeA A′ (n.fst)
(t, u).snd = u
(coe(A×B) (A′×B′) n).snd = coeB B′ (n.snd)



Issue 3: representing neutral coercion

Spine neutral values consist of a head which blocks computation, and a spine of blocked
eliminators. We want immediate access to the reason for blocking!

In plain NbE-based elaboration, heads can be
• bound variables (“rigid head”)
• metavariables (“flexible head”)

Weak-head forcing w.r.t. metacontext: unfold solved metas in head position.

How should we represent neutral coercions?
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Issue 3: representing neutral coercion

We need at least three different ways to represent coercion.

1. A rigidly blocked coercion of a canonical value is a rigid head.
• Example: (coeBool Nat true) .(NatElim args)
• This kind of coercion always signals an error.
• But we need to compute with errors if we want to report multiple errors to users!

2. A flexibly blocked coercion of a canonical value is a flexible head.
• Example: (coeBool (α true) true) with empty spine.

3. Any coercion of a neutral value is a spine entry.
• Example: α t u .coeA B.
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Issue 4: coercing indexed inductive types

In usual OTT: fording with perhaps some non-forded sugar.

Fording doesn’t work here.

What about coe(Id A t t) (Id A′ t′ t′) (refl A t) = refl A′ t′?

In general, we need some kind of non-linear matching to detect when a coercion rule should
fire!

• Alternative: don’t bother computing these coercions.
• Alternative: make your users ford. In the core theory, only support parameterized types,

intensional identity and coe computation for refl.
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Playing with fire

What about coeB C (coeA B t) = coeA C t?

It’s undecidable: if the metacontext implies A = (A → A), coercion yields a definitional
isomorphism A ' (A → A), i.e. the untyped lambda calculus.

But it’s so nice in unification!
• α .coeA B =? t can be solvable as α := coeB A t.
• α (x .coeA B) =? t can be solvable as α := λ y. t[x 7→ y .coeB A].
• We get rid of the asymmetry of coe. AFAIK there’s no other way to do it.

We can only loop in inconsistent metacontexts (i.e. starting from invalid source).

How hard is it to make the elaborator loop?
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Comparison to heterogeneous unification

Heterogeneous unification restricts OTT: coercions can only appear
1 on the outside of a term in a postponed equation, i.e. in coeA B t = u.
2 around bound variables (called “twin variables”).

Heterogeneous unification
• doesn’t need coercions in the core,
• but it’s weaker
• and we have to use both homogeneous and heterogeneous unification if we want to be

efficient.
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More things & further work

Not mentioned:
• Interaction of OTT with controlled definition unfolding.
• Implementation of constraints & blocking.

Further work: get this to demo-able and testable state.
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