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Suppose we are trying to unify (¢, u) with (¢, u’) at the
>-type (x : A) X Bx, in an implementation of a dependently
typed language. If we get blocked when unifying the first
projections, e.g. because it’s a problem like « zero = f zero
for metavariables a and f, how do we proceed? Here, t = t’
is a postponed constraint and we have not yet established
that u and u’ have the same type. We would like to make as
much as possible progress, while preserving soundness and
only producing unique solutions.

We can conceptualize the situation as follows. The state
of elaboration and unification lives in a two-level type the-
ory, whose object level is the theory we want to elaborate
to, and the outer level supports functions and object-level
definitional equality, as type formers.! This means that we
do unification up to the definitional equality of the two-level
type theory, and postponed equations are now propositional
equalities.

Let’s go back to the example. First, assume that unification
of t and t’ is blocked and returns p : t = ¢’ as a postponed
constraint. Now we have apBp : Bt = Bt’, and may try
to unify coe(g;) gy u and u’ (eliding the equality proof
in coe). This unification attempt is unlikely to be useful,
unless coe computes in interesting ways. For example, if B
is A_.Nat and we’re trying to solve (¢, zero) = (¢, zero),
COeNat Nat Z€ro may compute to zero and we can match zero
with zero. Generally, we want — = - to be some kind of
observational equality.

This idea is not new. Gundry and McBride [3], Gundry
[2] and Juan [4] have developed heterogeneous unification,
where we work with equations of the form (¢ : A) = (u : B),
where A = B is implicitly proven from the context. This is
a “dependent equality” lying over a given equality of types.
There are rules that decompose equalities between matching
type and term formers. If we think of heterogeneous equality
as homogeneous equality with an implicit coercion on one
side, such rules specify the computation of coercions. This
can be viewed as one of the three flavors of proof-irrelevant
observational equality in the literature:

1. “John Major” equality as primitive: (¢ : A) = (u : B)
is an existential bundle of a type equality and a term
equality [1].

2. Dependent equality as primitive, as we just saw in
heterogeneous unification.

3. Homogeneous equality as primitive [5-7].

IThis is a bit simplified; in practice we probably want a primitive notion of
context for contextual metavariables.

Version (2) has some drawbacks when used in an elaborator.
In a system without definitional singleton types (like a unit
type with an n-rule), we can check n-conversion for IT and
Y in a purely syntax-directed way using homogeneously
typed unification; this is how current Rocq works. Even in
the presence of singleton types, we may only want to com-
pute types when necessary. With heterogeneous unification,
type computation becomes more pervasive: we need to com-
pute types to detect n-conversion and to check well-typing
of metavariable solutions. It seems to be an obvious opti-
mization to support both homogeneous and heterogeneous
unification, and switch to the latter on demand, but that
would necessarily complicate the implementation.

We propose to use (3) instead, with only homogeneous uni-
fication and a coercion operation. Previously, heterogeneous
unification did not allow coercion to appear in arbitrary po-
sitions in terms, only allowing coercions of bound variables,
represented as either twin variables [2, 3] or twin contexts
[4]. General coercion is a complication in the core theory of
elaboration, but we think that it’s possibly a better overall
setup, for the following reasons.

First, type computation is compartmentalized in the eval-
uation of coercions and the rest of the implementation is
mostly the same as in the homogeneous case. Second, we
can solve more problems with general coercions than with
twin variables. For example, we can generally solve « f x
= coea g (f x) in our setup but not in the heterogeneous
one, since the coe on the right hand side is not applied to a
plain bound variable. Overall, we conjecture that this system
would be more efficient and slightly stronger in practice than
previous heterogeneous systems.

We also note an interesting but possibly dangerous feature
that we would like to investigate. It is the meta-level def-
initional equality expressing that coeg¢ (coesp t) is equal
to coey ¢ t. This is undecidable, since if we work under an
assumption of A = (A — A), we get a meta-level defini-
tional isomorphism between A and A — A, i.e. we get the
untyped lambda calculus. However a) it seems rather diffi-
cult to manufacture source syntax that makes the elaborator
loop b) we can only get a loop from unsolvable postponed
equations, i.e. only invalid source syntax can yield loops c)
being able to freely shift coercions between equation sides
would make the system significantly stronger than previous
heterogeneous unification.

Implementation. We are currently working on a prototype.
It is not functional but there is a good chance that it will be
two months from now.
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