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Γ ⊢ t : Unit Γ ⊢ u : Unit
Γ ⊢ t ≡ u

• Problem: t and u can be anything, including distinct bound variables.
• Problem: if we have η for Π and/or Σ, many more types are definitionally uniquely

inhabited! E.g. (Nat → Nat → Unit)× Unit.

Conversion checking has to compute some types.

Unit η is not essential...

... but a good implementation can be reused more generally (e.g. for singleton types, cubical
extension types, strict propositions).
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Unit η in current practice

• Rocq, Idris 2: no attempt, purely syntax-directed conversion.

• Lean 4:
• Checks: def eta (x y : Unit) : x = y := Eq.refl x.
• Fails1: def eta (x y : Unit -> Unit) : x = y := Eq.refl x

In the kernel: calling infer on terms to get their types and check if they’re unit.
• Agda: type-directed conversion, good but not quite complete, inefficient (computes types

even if they don’t make a difference).

1https://github.com/leanprover/lean4/issues/2258
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Overview

In this talk:
1 Simple setup: bidirectional elaboration, no metavariables. Code examples.
2 Metavariables: not simple, no code examples.

Partially implemented, not benchmarked. Not the final word on anything!



Basic setup

Distinction of terms and runtime values.2

data Tm data Ne
= Var Name = Var Name
| Pi Name Tm Tm | App Ne Val
| Lam Name Tm
| App Tm Tm type Ty = Val
| U
| Unit data Val
| Tt = Ne Ne

| Pi Name (Lazy Ty) (Val -> Ty)
| Lam Name (Lazy Ty) (Val -> Val)
| U
| Unit
| Tt

2Thierry Coquand, 1996: An algorithm for type-checking dependent types



Version 1: type-annotated neutrals
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Version 1: type-annotated neutrals

type Env = Map Name Val
eval : Env -> Tm -> Val
convert : Val -> Val -> ()
infer : Cxt -> RawTm -> (Tm, Ty)
check : Cxt -> RawTm -> Ty -> Tm

I use side-effectful pseudocode. eval is total, the other functions are partial.



Version 1: type-annotated neutrals

typeOfApp : Val -> Val -> Val
typeOfApp (Pi _ _ b) u = b u

app : Val -> Val -> Val
app t u = case t of
Ne n a -> Ne (App n u) (typeOfApp a u)
Lam _ _ t -> t u

eval : Env -> Tm -> Val
eval e t = case t of

...
App t u -> app (eval e t) (eval e u)
...



Version 1: type-annotated neutrals

isIrrelevant : Ty -> Bool
isIrrelevant a = case a of
Unit -> True
Pi x a b -> let v = fresh x a; isIrrelevant (b v)
_ -> False

convert : Val -> Val -> ()
convert t t' = case (t, t') of
...
(Ne n a, Ne n' _) -> try (convert n n') (guard (isIrrelevant a))
...

• Conversion is still-syntax directed.
• Types are only computed if conversion depends on unit η.
• Types are computed reasonably efficiently.



Enhancement: exploiting elaboration

The elaborator already computes many types - let’s compute relevances at the same time!
data Val
= Ne Ne (Lazy Ty) (Maybe Bool) -- "Just True" is irrelevant
... -- "Just False" is relevant
... -- "Nothing" is "no info"

appIrr :: Maybe Bool -> Maybe Bool
appIrr (Just True) = Just True
appIrr _ = Nothing

app : Val -> Val -> Val
app t u = case t of
Ne n a irr -> Ne (App n u) (appTy a u) (appIrr irr)
...



Enhancement: exploiting elaboration
convTy : Ty -> Ty -> Maybe Bool
convTy a a' = case (a, a') of
(U , U ) -> Just False
(Unit , Unit ) -> Just True
(Pi x a b, Pi _ a' b') -> convert a a';

let v = fresh x a; convTy (b v) (b' v)
(Ne n _ _, Ne n' _ _ ) -> convert n n'; Nothing
_ -> throw CantConvert

data Tm = ... | Relevance Tm Bool

eval : Env -> Tm -> Val
eval e t = case t of
Relevance t irr -> case eval e t of

Ne n a _ -> Ne n a (Just irr)
t -> t



Enhancement: exploiting elaboration

convert : Val -> Val -> ()
convert t t' = case (t, t') of
...
(Ne n a irr, Ne n' _ irr') ->

try (guard (irr == Just True || irr' == Just True)) $
try (convert n n') $
guard (irr == Nothing && irr' == Nothing && isIrrelevant a)

...

In elaboration: when comparing an expected and inferred type, we use convTy to annotate
the output with relevance.



More fancy enhancements

1 Memoize relevances computed during conversion.
2 Don’t return Nothing from convTy, instead return a syntactic representation of a

blocked computation.
• Example: we have a big record type where all fields are irrelevant, except one with neutral

type. Only the neutral type should re-evaluated at conversion time.

Should be benchmarked! Could be pointless in practice.



Metavariables

Many complications.

Agda issue https://github.com/agda/agda/issues/5837:

test : (g : ⊤ → Bool)(h : Bool → ∀ b → if b then ⊤ else Bool) → ⊤
test g h =
let m = _

p : m ≡ g (h m true)
p = refl in

tt

https://github.com/agda/agda/issues/5837


Task 1: detect irrelevant unification contexts

Assume bound variables f and g:
f (gα) =? f (g t)

If f’s or g’s return type is irrelevant, we cannot uniquely solve the metavariable α to t.

During unification, if any enclosing neutral has an irrelevant type:
• Thrown exceptions are caught at the innermost such neutral.
• Attempting to solve a relevant metavariable instead throws an exception.



Task 2: detect contractible contexts in meta solution candidates

Assume bound variables f and g:

α =? f (gα)

This is an occurs error, except if α occurs in a contractible subterm. E.g. we may produce the
solution:

α := f tt

Again we need to catch errors at contractible enclosing neutrals.



Task 3: detect irrelevance in higher-order pattern checking

Assume bound variable x:

α x x =? x

This has two solutions:

α := λ x _. x

α := λ_ x. x

But if x’s type is irrelevant, we can pick either as the unique solution.

We need to catch linearity errors by looking at pattern variable types.



Summary

I propose:
• Computing types only on demand, but efficiently.
• Piggybacking relevance computation on conversion checking in elaboration.
• Systematically catching errors and converting them to successes, based on the relevance

of computational contexts.

Thank you!


