
Eta conversion for the unit type (is still not that simple)

András Kovács
University of Gothenburg & Chalmers University of Technology

Sweden

𝜂-conversion for the unit type is a simple feature with well-
known formal metatheory, but in practical implementations
it’s more often shunned than supported. The problem is
that it requires type-aware conversion, and implementors
prefer the comfort of the purely syntax-directed world. To
date, Agda is the only big system that attempts to support
it, but its support is not particularly efficient or complete
[2]. I describe improved designs in the following, which I
hope to be much faster than the existing Agda version, while
guaranteeing unique solutions of unification problems.

Conversion checking without metavariables
This turns out to be pretty easy. The main principle: types
should be only computed if unit 𝜂 can possibly make a differ-
ence. This is different from Agda.

• In Agda, conversion checking receives the type of the
sides as an extra argument, and scrutinizes the head
of the type during each head comparison.

• We use normalization-by-evaluation where neutrals
are annotated with their lazily computed semantic
type, and also the lazily computed definitional rele-
vance of that type. Conversion checking is still syntax-
directed and ignorant of types for the most part. The
only difference is that whenever conversion checking
for two neutrals fails, we can “catch” the failure by
testing if the type is definitionally irrelevant, i.e. if all
inhabitants of the type are convertible.

This design optimizes performance for the definitionally
relevant case. We traverse irrelevant terms deeply, and com-
pute relevance only if they are not strictly the same. Agda
can immediately short-circuit the comparison of irrelevant
terms, but at the cost of weak-head forcing the type of every
subterm.

Handling metavariables
This introduces several complications. During conversion
checking, metavariables can be compared against terms and
become solved. As a general rule, we can only solve metavari-
ables if we’re working in a relevant computational context.

For example, assuming bound variables 𝑓 and𝑔 andmetavari-
able 𝛼 , when comparing 𝑓 (𝑔 𝛼) to 𝑓 (𝑔 𝑡), if the return type
of 𝑔 is irrelevant, we should not solve 𝛼 to 𝑡 , regardless of
𝛼 ’s relevance. Doing so would unnecessarily restrict 𝛼 .

Hence, we pass the lazily computed relevance of the com-
putational context as an extra argument to conversion check-
ing, and we look at it whenever we want to solve a metavari-
able, or when we hit a rigid mismatch. The context is rel-
evant if every enclosing neutral value has a relevant type,

and irrelevant otherwise. If we look at the context relevance
and find it to be irrelevant, we throw an exception that gets
catched at the innermost enclosing irrelevant neutral. Note
that relevance checking can be blocked by metavariables, so
relevances can be “unknown”.

Here, we typically compute many more types than in the
metavariable-free case; every metavariable solution forces
the types of enclosing neutrals. The situation is not too bad
though. First, typically, much of conversion checking doesn’t
produce meta solutions.
Second, we can exploit elaboration for an optimization.

For example, when bidirectional elaboration switches from
checking to inference, it compares inferred and expected
types. At that point, we can additionally compute and record
the relevance of the type, and embed it into core syntax in
the elaboration output. Then, when evaluation hits a rele-
vance annotation, it can immediately tag neutral values with
relevance, without forcing their types.

Pattern unification
There are two more operations where relevance makes a dif-
ference: a) pattern inversion in pattern unification b) partial
substitution of right hand sides of unification problems [1];
this generalizes “occurs checking” and scope checking.
In both cases, irrelevance works as a get-out-of-jail card:

when we run into an error, it turns into a success if we’re in
an irrelevant context.

• Linearity errors can be disregarded if non-linear vari-
ables are irrelevant, e.g. 𝛼 𝑥 𝑥 =? 𝑓 𝑥 is uniquely solv-
able as 𝛼 = 𝜆 _𝑥 . 𝑓 𝑥 if 𝑥 is irrelevant.

• An otherwise non-invertible neutral term can be in-
verted if its type is irrelevant. For example, if 𝑓 :
Bool → ⊤, then 𝛼 (𝑓 True) 𝑥 =?𝑥 is solvable with
𝛼 = 𝜆 _𝑥 . 𝑥 .

• In partial substitution for the RHS, an illegal occur-
rence error can be caught at an enclosing contractible
neutral, in which case we replace the neutral with the
unique closed inhabitant of the type.

Is this worth the effort?
If we only consider the 𝜂-rule for the unit type, all of this
extra infrastructuremight not look like a great deal. However,
almost the same setup can be reused for other things. First,
we can use it to support a strict Prop with an embedding
from Prop to Type (which Agda supports but Coq doesn’t).
Second, extension types (cubical or non-cubical) [4, 5] and
cubical sub-types [3] also induce definitional irrelevance that
needs to be handled.



András Kovács

References
[1] Andreas Abel and Brigitte Pientka. 2011. Higher-Order Dynamic Pat-

tern Unification for Dependent Types and Records. In Typed Lambda
Calculi and Applications - 10th International Conference, TLCA 2011,
Novi Sad, Serbia, June 1-3, 2011. Proceedings (Lecture Notes in Com-
puter Science, Vol. 6690), C.-H. Luke Ong (Ed.). Springer, 10–26. https:
//doi.org/10.1007/978-3-642-21691-6_5

[2] Agda developers. 2022. Agda issue 5837. https://github.com/agda/
agda/issues/5837

[3] Agda developers. 2024. Documentation for Cubical Agda. https:
//agda.readthedocs.io/en/v2.7.0.1/language/cubical.html

[4] Daniel Gratzer, Jonathan Sterling, Carlo Angiuli, Thierry Coquand,
and Lars Birkedal. 2022. Controlling unfolding in type theory. CoRR
abs/2210.05420 (2022). https://doi.org/10.48550/ARXIV.2210.05420
arXiv:2210.05420

[5] Emily Riehl and Michael Shulman. 2017. A type theory for synthetic
∞-categories. arXiv preprint arXiv:1705.07442 (2017).

https://doi.org/10.1007/978-3-642-21691-6_5
https://doi.org/10.1007/978-3-642-21691-6_5
https://github.com/agda/agda/issues/5837
https://github.com/agda/agda/issues/5837
https://agda.readthedocs.io/en/v2.7.0.1/language/cubical.html
https://agda.readthedocs.io/en/v2.7.0.1/language/cubical.html
https://doi.org/10.48550/ARXIV.2210.05420
https://arxiv.org/abs/2210.05420

	References

