Nested Pattern Unification

Andras Kovacs! j.w.w. Rafaél Bocquet!
LEstvos Lorand University

28 Aug 2023, Braga, 2nd Workshop on the Implementation of Type
Systems



Pattern Unification

? . .
« Xy X1 ... Xp = rhs is solvable if

@ x; are distinct bound vars.
® rhs only depends on x; bound vars.

® « does not occur in rhs.

Then o := A xg xy ... xp. rhs.

All major dependently typed languages use pattern unification with some
extensions.



Reduction to patterns

Reduce non-pattern problems to pattern ones. Examples:

@ 7-contraction:
? ?
a(Ax.fx)=rhs = af=rhs
@® X -elimination:

x:(a:A) x Bat a(fstx) < fstx

= a:A,b:Bal—oza;a

a:AxB— Chal(ab)=a

0
= od:A=B— Ca:=uncurryd' o ab=a



Issues with reduction to patterns

n-contraction for ¥ is expensive (needs conversion checks).

Y-elimination is potentially expensive and unnecessarily n-long.

a(Axy. fyx) L rhs is not reducible to a pattern problem.



Nested patterns

We directly solve a larger class of problems, called nested pattern
problems.

Advantages:
® Conjecture: whenever fis a definitional isomorphism, a (fx) = xis
solvable as a := f 1.

® A single pass on the spine and rhs is enough. No 7-contraction,
Y-elimination or administrative metas are needed.

Implementations:
® https://github.com/AndrasKovacs/sett
® https://gitlab.com/RafaelBocquet/obstt


https://github.com/AndrasKovacs/sett
https://gitlab.com/RafaelBocquet/obstt

Algorithm

Basic idea:
® )\ pairing and projection is allowed in spines, recursively.
?
® |n I' - acspine = rhs, rhs lives in " but the eventual solution is closed

w.r.t. bound vars. So we need a substitution to make rhs depend only
on the A-bound vars in the solution.

® Recursing on the spine, we generate A-s and pairings in the solution
and also build the mentioned substitution.

It's not realistic to fully explain the algorithm in this talk so I'll focus on
examples. | include a more detailed spec on the slides though.



Scope notation

The actual implementation uses De Bruijn indices and levels.



Scope notation

The actual implementation uses De Bruijn indices and levels.

Informally, we use names and distinguish two scopes by naming:
® x, v,z f g hlive in the problem scope, which is I" in
I' - aspine L ths.

® a3 b,c d, e live in the solution scope.



Scope notation

The actual implementation uses De Bruijn indices and levels.

Informally, we use names and distinguish two scopes by naming:
® x, v,z f g hlive in the problem scope, which is I" in
I' - aspine L ths.
® a3 b,c d, e live in the solution scope.

. b ? . . .
Notation: I' a;y: x marks the solution scope binders already in the
problem statement.



Scope notation

The actual implementation uses De Bruijn indices and levels.

Informally, we use names and distinguish two scopes by naming:

® x, v,z f g hlive in the problem scope, which is I" in
I' - aspine L ths.

® a3 b,c d, e live in the solution scope.

. b ? . . .
Notation: I' oz>a<y: x marks the solution scope binders already in the
problem statement.

Here, pattern inversion yields [x — a, y — b], and the solution is
a:=Xab.x[x— a, y+ b]

which is o := M ab. a.



Partial substitutions

Simple pattern inversion: outputs a partial map from problem scope vars
to solution scope vars.



Partial substitutions

Simple pattern inversion: outputs a partial map from problem scope vars
to solution scope vars.

We generalize this to maps sending variables to certain partial values.

Partial values are generated by:
® Variables, A, application, projection, pairing.

e A formal TOP and a BOT value, both inhabiting any type.



Partial substitutions

Simple pattern inversion: outputs a partial map from problem scope vars
to solution scope vars.

We generalize this to maps sending variables to certain partial values.

Partial values are generated by:
® Variables, A, application, projection, pairing.
e A formal TOP and a BOT value, both inhabiting any type.

Partial values have a partial ordering where TOP is top and BOT is
bottom.

® |f 3 meta solution contains TOP or BOT, that's a unification error.

® TOP signals an ambiguity from non-linearity, while BOT signals an
out-of-scope dependency.



Informal examples (1)

R

In a aspine = rhs problem, we recurse on spine while accumulating a
partial substitution. The starting substitution maps all vars to BOT, and
at each step it may get more defined.



Informal examples (1)

R

In a aspine = rhs problem, we recurse on spine while accumulating a
partial substitution. The starting substitution maps all vars to BOT, and
at each step it may get more defined.

a
® To solve: « (fstx) L fstx.



Informal examples (1)

R
In a aspine = rhs problem, we recurse on spine while accumulating a
partial substitution. The starting substitution maps all vars to BOT, and
at each step it may get more defined.
a ?
® To solve: a (fstx) = fstx.

® We start with ¢ := [x+— BOT].



Informal examples (1)

In a arspine ~ ths problem, we recurse on spine while accumulating a
partial substitution. The starting substitution maps all vars to BOT, and
at each step it may get more defined.

® To solve: « (fsf: X) L fstx.

® We start with ¢ := [x+— BOT].

® We try to extend o with [fst x +— al.



Informal examples (1)

R
In a aspine = rhs problem, we recurse on spine while accumulating a
partial substitution. The starting substitution maps all vars to BOT, and
at each step it may get more defined.

To solve: « (fst x) L fstx.
We start with o := [x — BOT].
We try to extend o with [fst x — al.

This decomposes to [x — (a, BOT)].



Informal examples (1)

In a arspine ~ ths problem, we recurse on spine while accumulating a
partial substitution. The starting substitution maps all vars to BOT, and
at each step it may get more defined.

® To solve: « (fsi X) L fstx.

® We start with ¢ := [x+— BOT].

® We try to extend o with [fst x +— al.

® This decomposes to [x — (a, BOT)].
Now o LI [x+> (a, BOT)] is [x — (a, BOT)].



Informal examples (1)

In a arspine ~ ths problem, we recurse on spine while accumulating a
partial substitution. The starting substitution maps all vars to BOT, and
at each step it may get more defined.

® To solve: « (fsi X) L fstx.

® We start with ¢ := [x+— BOT].

® We try to extend o with [fst x +— al.

® This decomposes to [x — (a, BOT)].
Now o LI [x+> (a, BOT)] is [x — (a, BOT)].

® We recurse on the spine, and the result will be under ) a.



Informal examples (1)

In a arspine ~ ths problem, we recurse on spine while accumulating a
partial substitution. The starting substitution maps all vars to BOT, and
at each step it may get more defined.

® To solve: « (fsi X) L fstx.

® We start with ¢ := [x+— BOT].

® We try to extend o with [fst x +— al.

® This decomposes to [x — (a, BOT)].

® Now o U [x— (a, BOT)] is [x — (a, BOT)].

® We recurse on the spine, and the result will be under ) a.

® The rest of the spine is empty, so we return rhs substituted with o.



Informal examples (1)

R
In a aspine = rhs problem, we recurse on spine while accumulating a
partial substitution. The starting substitution maps all vars to BOT, and
at each step it may get more defined.

To solve: « (fsi X) L fstx.

We start with o := [x — BOT].

We try to extend o with [fst x — al.

This decomposes to [x — (a, BOT)].

Now o LI [x+> (a, BOT)] is [x — (a, BOT)].

We recurse on the spine, and the result will be under X\ a.

The rest of the spine is empty, so we return rhs substituted with o.

Hence, the solution is A a. (fst x)[o], that is, A a. a.



Informal examples (2)



Informal examples (2)

ab
® To solve: axx = x.



Informal examples (2)

ab ?
® To solve: axx = x.

® We start again with o := [x — BOT].



Informal examples (2)

ab ?
® To solve: axx = x.

® We start again with o := [x — BOT].

® Processing the next spine entry, we get [x — al.



Informal examples (2)

ab ?
To solve: axx = x.

We start again with o := [x+— BOT].

® Processing the next spine entry, we get [x — al.

Next, we do o := o U [x+— b.



Informal examples (2)

ab ?
To solve: axx = x.

We start again with o := [x+— BOT].

Processing the next spine entry, we get [x — a.

Next, we do o := o U [x+— b.

We get [x — TOP] because the lub of distinct variables is TOP.



Informal examples (2)

ab ?
To solve: axx = x.

We start again with o := [x+— BOT].

® Processing the next spine entry, we get [x — al.

Next, we do o := o U [x+— b.
We get [x — TOP] because the lub of distinct variables is TOP.

Hence, the solution is A ab. TOP, i.e. a non-linearity error.



Informal examples (3)



Informal examples (3)

a
® To solve: a(Axy.fyx) Lt



Informal examples (3)

a
® To solve: a(Axy.fyx) Zf
® We try to decompose [(Axy. fyx) — al.



Informal examples (3)

a
® To solve: a(Axy.fyx) Zf
® We try to decompose [(Axy. fyx) — al.

b
® That gets us x, y - fy>c<'—> axy.



Informal examples (3)

a
To solve: a(Axy. fyx) Zf

We try to decompose [(Axy. fyx) — al.

b
That gets us x, y - fy>c<'—> axy.

This is a nested pattern problem!



Informal examples (3)

a
To solve: a(Axy. fyx) Zf

We try to decompose [(Axy. fyx) — al.

b
That gets us x, y - fy>c<'—> axy.

This is a nested pattern problem!

Note that fis OK here in head position, but e.g. x would not be!



Informal examples (3)

a
® To solve: a(Axy.fyx) Zf
® We try to decompose [(Axy. fyx) — al.

b
® That gets us x, y - fy>c<'—> axy.
® This is a nested pattern problem!
® Note that fis OK here in head position, but e.g. x would not be!

® We'll see in the details later that solvable and parameter vars need to
be distinguished.



Informal examples (3)

a
® To solve: a(Axy.fyx) Zf
® We try to decompose [(Axy. fyx) — al.

b
® That gets us x, y - fy>c<'—> axy.
® This is a nested pattern problem!
® Note that fis OK here in head position, but e.g. x would not be!

® We'll see in the details later that solvable and parameter vars need to
be distinguished.

® Recursive solving gets us [f— A bc.ach).



Informal examples (3)

a
® To solve: a(Axy.fyx) Zf
® We try to decompose [(Axy. fyx) — al.

b
® That gets us x, y - fy>c<'—> axy.
® This is a nested pattern problem!
® Note that fis OK here in head position, but e.g. x would not be!

® We'll see in the details later that solvable and parameter vars need to
be distinguished.

® Recursive solving gets us [f— A bc.ach).

® This gets lub-ed to the top o, so we get Aabc. acb as overall
solution.



Specification (1/4)

o
solve tries to produce a solution for I' - avspine = rhs:

solve ' a sp rhs := solveSp I' « [xi » BOT] a sp rhs
solveSp is a worker function that iterates through the spine and
accumulates the partial substitution o. A is the solution scope.

solveSp I' A 6 a sp rhs

invertArg tries to extend o with the mapping [t — a sp’]. The problem
scope I is split to three regions, “unsolvable” (Iv), “solvable” (Is), and
“parameters” (I'p). A nested pattern is only solvable if headed by a
solvable variable.

invertArg v 's ' A o t (a sp')

solveNestedSp produces a solution from a nested spine.

solveNestedSp N'u I's Tpy A o sp (a sp')



Specification (2/4)

solve ' a sp rhs = solveSp ' » [xi » BOT] sp rhs

solveSp ' A o a [] rhs =
rhs[o, a » BOT]

solveSp ' A o o (app t :: sp) rhs =
A a. solveSp I' (A, a) (invertArg « T « Ao t (a [])) a sp rhs

solveSp I' A 6 a (fst :: sp) rhs =
(solveSp ' A 6 a sp rhs, freshMeta A)

solveSp ' A 6 a (snd :: sp) rhs =
(freshMeta A, solveSp ' A o o sp rhs)

solveSp ' A o o _ rhs =
fail



Specification (3/4)

invertArg 'u I's T'p A o (x sp) (a sp')
| X ETu vXET =
fail
| x €Ts =
6 U [x » solveNestedSp (Iu,ls) I'p =« A o sp (a sp')l]

invertArg 'u I's T A 6 (t, u) (a sp) =
let 0 = invertArg i 's F'p Ao t (a (sp :: .fst)) in
invertArg 'u 's 'y A 6 u (a (sp :: .snd))

invertArg 'u I's T'p A o (A x. t) (a sp) =
invertArg N I's (Fp, x) At (a (sp :: app x))

invertArg i I's 'p A o _ (a sp) =
fail



Specification (4/4)

solveNestedSp Nu s T'p A o [] (a sp') =
a (sp'lo])

solveNestedSp I'u I's Tp 6 (app t :: sp) (a sp') =
A a'. solveNestedSp INu 's T'p (A, a')
(invertArg Tu I's Tp Ao t (a' []))
sp (a sp')

solveNestedSp Nu I's T'p o (fst :: sp) (a sp')
(solveNestedSp Nu I's Tp 0 sp (a sp'), BOT)

solveNestedSp v 's Tp o (snd :: sp) (a sp')
(BOT, solveNestedSp I'u 's 'y 0 sp (a sp'))

solveNestedSp N'u I's T'p 0 _ (a sp') =
fail



Not explained here

Integration into NbE.
® |mplementation of partial substitution.

Support for unit n and typed inversion.
® Analogous generalization of pruning where we can prune dependencies
from inside nested II/3 types.



