
Nested Pattern Unification

András Kovács1 j.w.w. Rafaël Bocquet1

1Eötvös Loránd University

28 Aug 2023, Braga, 2nd Workshop on the Implementation of Type
Systems



Pattern Unification

α x0 x1 ... xn
?
= rhs is solvable if

1 xi are distinct bound vars.
2 rhs only depends on xi bound vars.
3 α does not occur in rhs.

Then α := λ x0 x1 ... xn. rhs.

All major dependently typed languages use pattern unification with some
extensions.



Reduction to patterns

Reduce non-pattern problems to pattern ones. Examples:
1 η-contraction:

α (λ x. f x) ?
= rhs ⇒ α f ?

= rhs

2 Σ-elimination:

x : (a : A)× B a ` α (fst x) ?
= fst x

⇒ a : A, b : B a ` α a ?
= a

α : A × B → C ` α (a, b) ?
= a

⇒ α′ : A → B → C, α := uncurryα′ ` α′ a b ?
= a



Issues with reduction to patterns

η-contraction for Σ is expensive (needs conversion checks).

Σ-elimination is potentially expensive and unnecessarily η-long.

α (λ x y. f y x) ?
= rhs is not reducible to a pattern problem.



Nested patterns

We directly solve a larger class of problems, called nested pattern
problems.

Advantages:
• Conjecture: whenever f is a definitional isomorphism, α (f x) ?

= x is
solvable as α := f−1.

• A single pass on the spine and rhs is enough. No η-contraction,
Σ-elimination or administrative metas are needed.

Implementations:
• https://github.com/AndrasKovacs/sett
• https://gitlab.com/RafaelBocquet/obstt

https://github.com/AndrasKovacs/sett
https://gitlab.com/RafaelBocquet/obstt


Algorithm

Basic idea:
• λ, pairing and projection is allowed in spines, recursively.
• In Γ ` α spine ?

= rhs, rhs lives in Γ but the eventual solution is closed
w.r.t. bound vars. So we need a substitution to make rhs depend only
on the λ-bound vars in the solution.

• Recursing on the spine, we generate λ-s and pairings in the solution
and also build the mentioned substitution.

It’s not realistic to fully explain the algorithm in this talk so I’ll focus on
examples. I include a more detailed spec on the slides though.



Scope notation

The actual implementation uses De Bruijn indices and levels.

Informally, we use names and distinguish two scopes by naming:
• x, y, z, f, g, h live in the problem scope, which is Γ in

Γ ` α spine ?
= rhs.

• a, b, c, d, e live in the solution scope.
Notation: Γ ` α

ax by ?
= x marks the solution scope binders already in the

problem statement.

Here, pattern inversion yields [x 7→ a, y 7→ b], and the solution is

α := λ a b. x[x 7→ a, y 7→ b]

which is α := λ a b. a.



Scope notation

The actual implementation uses De Bruijn indices and levels.

Informally, we use names and distinguish two scopes by naming:
• x, y, z, f, g, h live in the problem scope, which is Γ in
Γ ` α spine ?

= rhs.
• a, b, c, d, e live in the solution scope.

Notation: Γ ` α
ax by ?

= x marks the solution scope binders already in the
problem statement.

Here, pattern inversion yields [x 7→ a, y 7→ b], and the solution is

α := λ a b. x[x 7→ a, y 7→ b]

which is α := λ a b. a.



Scope notation

The actual implementation uses De Bruijn indices and levels.

Informally, we use names and distinguish two scopes by naming:
• x, y, z, f, g, h live in the problem scope, which is Γ in
Γ ` α spine ?

= rhs.
• a, b, c, d, e live in the solution scope.

Notation: Γ ` α
ax by ?

= x marks the solution scope binders already in the
problem statement.

Here, pattern inversion yields [x 7→ a, y 7→ b], and the solution is

α := λ a b. x[x 7→ a, y 7→ b]

which is α := λ a b. a.



Scope notation

The actual implementation uses De Bruijn indices and levels.

Informally, we use names and distinguish two scopes by naming:
• x, y, z, f, g, h live in the problem scope, which is Γ in
Γ ` α spine ?

= rhs.
• a, b, c, d, e live in the solution scope.

Notation: Γ ` α
ax by ?

= x marks the solution scope binders already in the
problem statement.

Here, pattern inversion yields [x 7→ a, y 7→ b], and the solution is

α := λ a b. x[x 7→ a, y 7→ b]

which is α := λ a b. a.



Partial substitutions

Simple pattern inversion: outputs a partial map from problem scope vars
to solution scope vars.

We generalize this to maps sending variables to certain partial values.

Partial values are generated by:
• Variables, λ, application, projection, pairing.
• A formal TOP and a BOT value, both inhabiting any type.

Partial values have a partial ordering where TOP is top and BOT is
bottom.
• If a meta solution contains TOP or BOT, that’s a unification error.
• TOP signals an ambiguity from non-linearity, while BOT signals an

out-of-scope dependency.



Partial substitutions

Simple pattern inversion: outputs a partial map from problem scope vars
to solution scope vars.

We generalize this to maps sending variables to certain partial values.

Partial values are generated by:
• Variables, λ, application, projection, pairing.
• A formal TOP and a BOT value, both inhabiting any type.

Partial values have a partial ordering where TOP is top and BOT is
bottom.
• If a meta solution contains TOP or BOT, that’s a unification error.
• TOP signals an ambiguity from non-linearity, while BOT signals an

out-of-scope dependency.



Partial substitutions

Simple pattern inversion: outputs a partial map from problem scope vars
to solution scope vars.

We generalize this to maps sending variables to certain partial values.

Partial values are generated by:
• Variables, λ, application, projection, pairing.
• A formal TOP and a BOT value, both inhabiting any type.

Partial values have a partial ordering where TOP is top and BOT is
bottom.
• If a meta solution contains TOP or BOT, that’s a unification error.
• TOP signals an ambiguity from non-linearity, while BOT signals an

out-of-scope dependency.



Informal examples (1)

In a α spine ?
= rhs problem, we recurse on spine while accumulating a

partial substitution. The starting substitution maps all vars to BOT, and
at each step it may get more defined.

• To solve: α (
a

fst x) ?
= fst x.

• We start with σ := [x 7→ BOT].
• We try to extend σ with [fst x 7→ a].
• This decomposes to [x 7→ (a, BOT)].
• Now σ t [x 7→ (a, BOT)] is [x 7→ (a, BOT)].
• We recurse on the spine, and the result will be under λ a.
• The rest of the spine is empty, so we return rhs substituted with σ.
• Hence, the solution is λ a. (fst x)[σ], that is, λ a. a.



Informal examples (1)

In a α spine ?
= rhs problem, we recurse on spine while accumulating a

partial substitution. The starting substitution maps all vars to BOT, and
at each step it may get more defined.

• To solve: α (
a

fst x) ?
= fst x.

• We start with σ := [x 7→ BOT].
• We try to extend σ with [fst x 7→ a].
• This decomposes to [x 7→ (a, BOT)].
• Now σ t [x 7→ (a, BOT)] is [x 7→ (a, BOT)].
• We recurse on the spine, and the result will be under λ a.
• The rest of the spine is empty, so we return rhs substituted with σ.
• Hence, the solution is λ a. (fst x)[σ], that is, λ a. a.



Informal examples (1)

In a α spine ?
= rhs problem, we recurse on spine while accumulating a

partial substitution. The starting substitution maps all vars to BOT, and
at each step it may get more defined.

• To solve: α (
a

fst x) ?
= fst x.

• We start with σ := [x 7→ BOT].

• We try to extend σ with [fst x 7→ a].
• This decomposes to [x 7→ (a, BOT)].
• Now σ t [x 7→ (a, BOT)] is [x 7→ (a, BOT)].
• We recurse on the spine, and the result will be under λ a.
• The rest of the spine is empty, so we return rhs substituted with σ.
• Hence, the solution is λ a. (fst x)[σ], that is, λ a. a.



Informal examples (1)

In a α spine ?
= rhs problem, we recurse on spine while accumulating a

partial substitution. The starting substitution maps all vars to BOT, and
at each step it may get more defined.

• To solve: α (
a

fst x) ?
= fst x.

• We start with σ := [x 7→ BOT].
• We try to extend σ with [fst x 7→ a].

• This decomposes to [x 7→ (a, BOT)].
• Now σ t [x 7→ (a, BOT)] is [x 7→ (a, BOT)].
• We recurse on the spine, and the result will be under λ a.
• The rest of the spine is empty, so we return rhs substituted with σ.
• Hence, the solution is λ a. (fst x)[σ], that is, λ a. a.



Informal examples (1)

In a α spine ?
= rhs problem, we recurse on spine while accumulating a

partial substitution. The starting substitution maps all vars to BOT, and
at each step it may get more defined.

• To solve: α (
a

fst x) ?
= fst x.

• We start with σ := [x 7→ BOT].
• We try to extend σ with [fst x 7→ a].
• This decomposes to [x 7→ (a, BOT)].

• Now σ t [x 7→ (a, BOT)] is [x 7→ (a, BOT)].
• We recurse on the spine, and the result will be under λ a.
• The rest of the spine is empty, so we return rhs substituted with σ.
• Hence, the solution is λ a. (fst x)[σ], that is, λ a. a.



Informal examples (1)

In a α spine ?
= rhs problem, we recurse on spine while accumulating a

partial substitution. The starting substitution maps all vars to BOT, and
at each step it may get more defined.

• To solve: α (
a

fst x) ?
= fst x.

• We start with σ := [x 7→ BOT].
• We try to extend σ with [fst x 7→ a].
• This decomposes to [x 7→ (a, BOT)].
• Now σ t [x 7→ (a, BOT)] is [x 7→ (a, BOT)].

• We recurse on the spine, and the result will be under λ a.
• The rest of the spine is empty, so we return rhs substituted with σ.
• Hence, the solution is λ a. (fst x)[σ], that is, λ a. a.



Informal examples (1)

In a α spine ?
= rhs problem, we recurse on spine while accumulating a

partial substitution. The starting substitution maps all vars to BOT, and
at each step it may get more defined.

• To solve: α (
a

fst x) ?
= fst x.

• We start with σ := [x 7→ BOT].
• We try to extend σ with [fst x 7→ a].
• This decomposes to [x 7→ (a, BOT)].
• Now σ t [x 7→ (a, BOT)] is [x 7→ (a, BOT)].
• We recurse on the spine, and the result will be under λ a.

• The rest of the spine is empty, so we return rhs substituted with σ.
• Hence, the solution is λ a. (fst x)[σ], that is, λ a. a.



Informal examples (1)

In a α spine ?
= rhs problem, we recurse on spine while accumulating a

partial substitution. The starting substitution maps all vars to BOT, and
at each step it may get more defined.

• To solve: α (
a

fst x) ?
= fst x.

• We start with σ := [x 7→ BOT].
• We try to extend σ with [fst x 7→ a].
• This decomposes to [x 7→ (a, BOT)].
• Now σ t [x 7→ (a, BOT)] is [x 7→ (a, BOT)].
• We recurse on the spine, and the result will be under λ a.
• The rest of the spine is empty, so we return rhs substituted with σ.

• Hence, the solution is λ a. (fst x)[σ], that is, λ a. a.



Informal examples (1)

In a α spine ?
= rhs problem, we recurse on spine while accumulating a

partial substitution. The starting substitution maps all vars to BOT, and
at each step it may get more defined.

• To solve: α (
a

fst x) ?
= fst x.

• We start with σ := [x 7→ BOT].
• We try to extend σ with [fst x 7→ a].
• This decomposes to [x 7→ (a, BOT)].
• Now σ t [x 7→ (a, BOT)] is [x 7→ (a, BOT)].
• We recurse on the spine, and the result will be under λ a.
• The rest of the spine is empty, so we return rhs substituted with σ.
• Hence, the solution is λ a. (fst x)[σ], that is, λ a. a.



Informal examples (2)

• To solve: α
ax bx ?

= x.
• We start again with σ := [x 7→ BOT].
• Processing the next spine entry, we get [x 7→ a].
• Next, we do σ := σ t [x 7→ b].
• We get [x 7→ TOP] because the lub of distinct variables is TOP.
• Hence, the solution is λ a b.TOP, i.e. a non-linearity error.



Informal examples (2)

• To solve: α
ax bx ?

= x.

• We start again with σ := [x 7→ BOT].
• Processing the next spine entry, we get [x 7→ a].
• Next, we do σ := σ t [x 7→ b].
• We get [x 7→ TOP] because the lub of distinct variables is TOP.
• Hence, the solution is λ a b.TOP, i.e. a non-linearity error.



Informal examples (2)

• To solve: α
ax bx ?

= x.
• We start again with σ := [x 7→ BOT].

• Processing the next spine entry, we get [x 7→ a].
• Next, we do σ := σ t [x 7→ b].
• We get [x 7→ TOP] because the lub of distinct variables is TOP.
• Hence, the solution is λ a b.TOP, i.e. a non-linearity error.



Informal examples (2)

• To solve: α
ax bx ?

= x.
• We start again with σ := [x 7→ BOT].
• Processing the next spine entry, we get [x 7→ a].

• Next, we do σ := σ t [x 7→ b].
• We get [x 7→ TOP] because the lub of distinct variables is TOP.
• Hence, the solution is λ a b.TOP, i.e. a non-linearity error.



Informal examples (2)

• To solve: α
ax bx ?

= x.
• We start again with σ := [x 7→ BOT].
• Processing the next spine entry, we get [x 7→ a].
• Next, we do σ := σ t [x 7→ b].

• We get [x 7→ TOP] because the lub of distinct variables is TOP.
• Hence, the solution is λ a b.TOP, i.e. a non-linearity error.



Informal examples (2)

• To solve: α
ax bx ?

= x.
• We start again with σ := [x 7→ BOT].
• Processing the next spine entry, we get [x 7→ a].
• Next, we do σ := σ t [x 7→ b].
• We get [x 7→ TOP] because the lub of distinct variables is TOP.

• Hence, the solution is λ a b.TOP, i.e. a non-linearity error.



Informal examples (2)

• To solve: α
ax bx ?

= x.
• We start again with σ := [x 7→ BOT].
• Processing the next spine entry, we get [x 7→ a].
• Next, we do σ := σ t [x 7→ b].
• We get [x 7→ TOP] because the lub of distinct variables is TOP.
• Hence, the solution is λ a b.TOP, i.e. a non-linearity error.



Informal examples (3)

• To solve: α
a

(λ x y. f y x) ?
= f.

• We try to decompose [(λ x y. f y x) 7→ a].
• That gets us x, y ` f by cx 7→ a x y.
• This is a nested pattern problem!
• Note that f is OK here in head position, but e.g. x would not be!
• We’ll see in the details later that solvable and parameter vars need to

be distinguished.
• Recursive solving gets us [f 7→ λ b c. a c b].
• This gets lub-ed to the top σ, so we get λ a b c. a c b as overall

solution.



Informal examples (3)

• To solve: α
a

(λ x y. f y x) ?
= f.

• We try to decompose [(λ x y. f y x) 7→ a].
• That gets us x, y ` f by cx 7→ a x y.
• This is a nested pattern problem!
• Note that f is OK here in head position, but e.g. x would not be!
• We’ll see in the details later that solvable and parameter vars need to

be distinguished.
• Recursive solving gets us [f 7→ λ b c. a c b].
• This gets lub-ed to the top σ, so we get λ a b c. a c b as overall

solution.



Informal examples (3)

• To solve: α
a

(λ x y. f y x) ?
= f.

• We try to decompose [(λ x y. f y x) 7→ a].

• That gets us x, y ` f by cx 7→ a x y.
• This is a nested pattern problem!
• Note that f is OK here in head position, but e.g. x would not be!
• We’ll see in the details later that solvable and parameter vars need to

be distinguished.
• Recursive solving gets us [f 7→ λ b c. a c b].
• This gets lub-ed to the top σ, so we get λ a b c. a c b as overall

solution.



Informal examples (3)

• To solve: α
a

(λ x y. f y x) ?
= f.

• We try to decompose [(λ x y. f y x) 7→ a].
• That gets us x, y ` f by cx 7→ a x y.

• This is a nested pattern problem!
• Note that f is OK here in head position, but e.g. x would not be!
• We’ll see in the details later that solvable and parameter vars need to

be distinguished.
• Recursive solving gets us [f 7→ λ b c. a c b].
• This gets lub-ed to the top σ, so we get λ a b c. a c b as overall

solution.



Informal examples (3)

• To solve: α
a

(λ x y. f y x) ?
= f.

• We try to decompose [(λ x y. f y x) 7→ a].
• That gets us x, y ` f by cx 7→ a x y.
• This is a nested pattern problem!

• Note that f is OK here in head position, but e.g. x would not be!
• We’ll see in the details later that solvable and parameter vars need to

be distinguished.
• Recursive solving gets us [f 7→ λ b c. a c b].
• This gets lub-ed to the top σ, so we get λ a b c. a c b as overall

solution.



Informal examples (3)

• To solve: α
a

(λ x y. f y x) ?
= f.

• We try to decompose [(λ x y. f y x) 7→ a].
• That gets us x, y ` f by cx 7→ a x y.
• This is a nested pattern problem!
• Note that f is OK here in head position, but e.g. x would not be!

• We’ll see in the details later that solvable and parameter vars need to
be distinguished.

• Recursive solving gets us [f 7→ λ b c. a c b].
• This gets lub-ed to the top σ, so we get λ a b c. a c b as overall

solution.



Informal examples (3)

• To solve: α
a

(λ x y. f y x) ?
= f.

• We try to decompose [(λ x y. f y x) 7→ a].
• That gets us x, y ` f by cx 7→ a x y.
• This is a nested pattern problem!
• Note that f is OK here in head position, but e.g. x would not be!
• We’ll see in the details later that solvable and parameter vars need to

be distinguished.

• Recursive solving gets us [f 7→ λ b c. a c b].
• This gets lub-ed to the top σ, so we get λ a b c. a c b as overall

solution.



Informal examples (3)

• To solve: α
a

(λ x y. f y x) ?
= f.

• We try to decompose [(λ x y. f y x) 7→ a].
• That gets us x, y ` f by cx 7→ a x y.
• This is a nested pattern problem!
• Note that f is OK here in head position, but e.g. x would not be!
• We’ll see in the details later that solvable and parameter vars need to

be distinguished.
• Recursive solving gets us [f 7→ λ b c. a c b].

• This gets lub-ed to the top σ, so we get λ a b c. a c b as overall
solution.



Informal examples (3)

• To solve: α
a

(λ x y. f y x) ?
= f.

• We try to decompose [(λ x y. f y x) 7→ a].
• That gets us x, y ` f by cx 7→ a x y.
• This is a nested pattern problem!
• Note that f is OK here in head position, but e.g. x would not be!
• We’ll see in the details later that solvable and parameter vars need to

be distinguished.
• Recursive solving gets us [f 7→ λ b c. a c b].
• This gets lub-ed to the top σ, so we get λ a b c. a c b as overall

solution.



Specification (1/4)

solve tries to produce a solution for Γ ` α spine ?
= rhs:

solve Γ α sp rhs := solveSp Γ ∙ [xᵢ ↦ BOT] α sp rhs

solveSp is a worker function that iterates through the spine and
accumulates the partial substitution σ. ∆ is the solution scope.

solveSp Γ Δ σ α sp rhs

invertArg tries to extend σ with the mapping [t 7→ a sp′]. The problem
scope Γ is split to three regions, “unsolvable” (Γᵤ), “solvable” (Γₛ), and
“parameters” (Γₚ). A nested pattern is only solvable if headed by a
solvable variable.

invertArg Γᵤ Γₛ Γₚ Δ σ t (a sp')

solveNestedSp produces a solution from a nested spine.
solveNestedSp Γᵤ Γₛ Γₚ Δ σ sp (a sp')



Specification (2/4)

solve Γ α sp rhs = solveSp Γ ∙ [xᵢ ↦ BOT] sp rhs

solveSp Γ Δ σ α [] rhs =
rhs[σ, α ↦ BOT]

solveSp Γ Δ σ α (app t :: sp) rhs =
λ a. solveSp Γ (Δ, a) (invertArg ∙ Γ ∙ Δ σ t (a [])) α sp rhs

solveSp Γ Δ σ α (fst :: sp) rhs =
(solveSp Γ Δ σ α sp rhs, freshMeta Δ)

solveSp Γ Δ σ α (snd :: sp) rhs =
(freshMeta Δ, solveSp Γ Δ σ α sp rhs)

solveSp Γ Δ σ α _ rhs =
fail



Specification (3/4)

invertArg Γᵤ Γₛ Γₚ Δ σ (x sp) (a sp')
| x ∈ Γᵤ ∨ x ∈ Γₚ =
fail

| x ∈ Γₛ =
σ ⊔ [x ↦ solveNestedSp (Γᵤ,Γₛ) Γₚ ∙ Δ σ sp (a sp')]

invertArg Γᵤ Γₛ Γₚ Δ σ (t, u) (a sp) =
let σ = invertArg Γᵤ Γₛ Γₚ Δ σ t (a (sp :: .fst)) in
invertArg Γᵤ Γₛ Γₚ Δ σ u (a (sp :: .snd))

invertArg Γᵤ Γₛ Γₚ Δ σ (λ x. t) (a sp) =
invertArg Γᵤ Γₛ (Γₚ, x) Δ t (a (sp :: app x))

invertArg Γᵤ Γₛ Γₚ Δ σ _ (a sp) =
fail



Specification (4/4)

solveNestedSp Γᵤ Γₛ Γₚ Δ σ [] (a sp') =
a (sp'[σ])

solveNestedSp Γᵤ Γₛ Γₚ σ (app t :: sp) (a sp') =
λ a'. solveNestedSp Γᵤ Γₛ Γₚ (Δ, a')

(invertArg Γᵤ Γₛ Γₚ Δ σ t (a' []))
sp (a sp')

solveNestedSp Γᵤ Γₛ Γₚ σ (fst :: sp) (a sp') =
(solveNestedSp Γᵤ Γₛ Γₚ σ sp (a sp'), BOT)

solveNestedSp Γᵤ Γₛ Γₚ σ (snd :: sp) (a sp') =
(BOT, solveNestedSp Γᵤ Γₛ Γₚ σ sp (a sp'))

solveNestedSp Γᵤ Γₛ Γₚ σ _ (a sp') =
fail



Not explained here

• Integration into NbE.
• Implementation of partial substitution.
• Support for unit η and typed inversion.
• Analogous generalization of pruning where we can prune dependencies

from inside nested Π/Σ types.


