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Pattern Unification

? . .
« Xy X1 ... Xp = rhs is solvable if

@ x; are distinct bound vars.
® rhs only depends on x; bound vars.

® « does not occur in rhs.

Then o := A xg xy ... xp. rhs.

All major dependently typed languages use pattern unification with some
extensions.



Reduction to patterns

Reduce non-pattern problems to pattern ones. Examples:

@ 7-contraction:
? ?
a(Ax.fx)=rhs = af=rhs
@® X -elimination:

x:(a:A) x Bat a(fstx) < fstx

= a:A,b:Bal—oza;a

a:AxB— Chal(ab)=a

0
= od:A=B— Ca:=uncurryd' o ab=a



Issues with reduction to patterns

n-contraction for ¥ is expensive (needs conversion checks).

Y-elimination is potentially expensive and unnecessarily n-long.

a(Axy. fyx) L rhs is not reducible to a pattern problem.



Nested patterns

We directly solve a larger class of problems, called nested pattern
problems.

Advantages:
® Conjecture: whenever fis a definitional isomorphism, a (fx) = xis
solvable as a := f 1.

® A single pass on the spine and rhs is enough. No 7-contraction,
Y-elimination or administrative metas are needed.

Implementations:
® https://github.com/AndrasKovacs/sett
® https://gitlab.com/RafaelBocquet/obstt


https://github.com/AndrasKovacs/sett
https://gitlab.com/RafaelBocquet/obstt

Algorithm

Basic idea:
® )\ pairing and projection is allowed in spines, recursively.
?
® |n I' - acspine = rhs, rhs lives in " but the eventual solution is closed

w.r.t. bound vars. So we need a substitution to make rhs depend only
on the A-bound vars in the solution.

® Recursing on the spine, we generate A-s and pairings in the solution
and also build the mentioned substitution.

It's not realistic to fully explain the algorithm in this talk so I'll focus on
examples. | include a more detailed spec on the slides though.
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Scope notation

The actual implementation uses De Bruijn indices and levels.

Informally, we use names and distinguish two scopes by naming:

® x, v,z f g hlive in the problem scope, which is I" in
I' - aspine L ths.

® a3 b,c d, e live in the solution scope.

. b ? . . .
Notation: I' oz>a<y: x marks the solution scope binders already in the
problem statement.

Here, pattern inversion yields [x — a, y — b], and the solution is
a:=Xab.x[x— a, y+ b]

which is o := M ab. a.
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Partial substitutions

Simple pattern inversion: outputs a partial map from problem scope vars
to solution scope vars.

We generalize this to maps sending variables to certain partial values.

Partial values are generated by:
® Variables, A, application, projection, pairing.
e A formal TOP and a BOT value, both inhabiting any type.

Partial values have a partial ordering where TOP is top and BOT is
bottom.

® |f 3 meta solution contains TOP or BOT, that's a unification error.

® TOP signals an ambiguity from non-linearity, while BOT signals an
out-of-scope dependency.
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Informal examples (1)

R
In a aspine = rhs problem, we recurse on spine while accumulating a
partial substitution. The starting substitution maps all vars to BOT, and
at each step it may get more defined.

To solve: « (fsi X) L fstx.

We start with o := [x — BOT].

We try to extend o with [fst x — al.

This decomposes to [x — (a, BOT)].

Now o LI [x+> (a, BOT)] is [x — (a, BOT)].

We recurse on the spine, and the result will be under X\ a.

The rest of the spine is empty, so we return rhs substituted with o.

Hence, the solution is A a. (fst x)[o], that is, A a. a.
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ab ?
To solve: axx = x.

We start again with o := [x+— BOT].

® Processing the next spine entry, we get [x — al.

Next, we do o := o U [x+— b.
We get [x — TOP] because the lub of distinct variables is TOP.

Hence, the solution is A ab. TOP, i.e. a non-linearity error.



Informal examples (3)



Informal examples (3)

a
® To solve: a(Axy.fyx) Lt



Informal examples (3)

a
® To solve: a(Axy.fyx) Zf
® We try to decompose [(Axy. fyx) — al.



Informal examples (3)

a
® To solve: a(Axy.fyx) Zf
® We try to decompose [(Axy. fyx) — al.

b
® That gets us x, y - fy>c<'—> axy.



Informal examples (3)

a
To solve: a(Axy. fyx) Zf

We try to decompose [(Axy. fyx) — al.

b
That gets us x, y - fy>c<'—> axy.

This is a nested pattern problem!



Informal examples (3)

a
To solve: a(Axy. fyx) Zf

We try to decompose [(Axy. fyx) — al.

b
That gets us x, y - fy>c<'—> axy.

This is a nested pattern problem!

Note that fis OK here in head position, but e.g. x would not be!



Informal examples (3)

a
® To solve: a(Axy.fyx) Zf
® We try to decompose [(Axy. fyx) — al.

b
® That gets us x, y - fy>c<'—> axy.
® This is a nested pattern problem!
® Note that fis OK here in head position, but e.g. x would not be!

® We'll see in the details later that solvable and parameter vars need to
be distinguished.



Informal examples (3)

a
® To solve: a(Axy.fyx) Zf
® We try to decompose [(Axy. fyx) — al.

b
® That gets us x, y - fy>c<'—> axy.
® This is a nested pattern problem!
® Note that fis OK here in head position, but e.g. x would not be!

® We'll see in the details later that solvable and parameter vars need to
be distinguished.

® Recursive solving gets us [f— A bc.ach).



Informal examples (3)

a
® To solve: a(Axy.fyx) Zf
® We try to decompose [(Axy. fyx) — al.

b
® That gets us x, y - fy>c<'—> axy.
® This is a nested pattern problem!
® Note that fis OK here in head position, but e.g. x would not be!

® We'll see in the details later that solvable and parameter vars need to
be distinguished.

® Recursive solving gets us [f— A bc.ach).

® This gets lub-ed to the top o, so we get Aabc. acb as overall
solution.



Specification (1/4)

o
solve tries to produce a solution for I' - avspine = rhs:

solve ' a sp rhs := solveSp I' « [xi » BOT] a sp rhs
solveSp is a worker function that iterates through the spine and
accumulates the partial substitution o. A is the solution scope.

solveSp I' A 6 a sp rhs

invertArg tries to extend o with the mapping [t — a sp’]. The problem
scope I is split to three regions, “unsolvable” (Iv), “solvable” (Is), and
“parameters” (I'p). A nested pattern is only solvable if headed by a
solvable variable.

invertArg v 's ' A o t (a sp')

solveNestedSp produces a solution from a nested spine.

solveNestedSp N'u I's Tpy A o sp (a sp')



Specification (2/4)

solve ' a sp rhs = solveSp ' » [xi » BOT] sp rhs

solveSp ' A o a [] rhs =
rhs[o, a » BOT]

solveSp ' A o o (app t :: sp) rhs =
A a. solveSp I' (A, a) (invertArg « T « Ao t (a [])) a sp rhs

solveSp I' A 6 a (fst :: sp) rhs =
(solveSp ' A 6 a sp rhs, freshMeta A)

solveSp ' A 6 a (snd :: sp) rhs =
(freshMeta A, solveSp ' A o o sp rhs)

solveSp ' A o o _ rhs =
fail



Specification (3/4)

invertArg 'u I's T'p A o (x sp) (a sp')
| X ETu vXET =
fail
| x €Ts =
6 U [x » solveNestedSp (Iu,ls) I'p =« A o sp (a sp')l]

invertArg 'u I's T A 6 (t, u) (a sp) =
let 0 = invertArg i 's F'p Ao t (a (sp :: .fst)) in
invertArg 'u 's 'y A 6 u (a (sp :: .snd))

invertArg 'u I's T'p A o (A x. t) (a sp) =
invertArg N I's (Fp, x) At (a (sp :: app x))

invertArg i I's 'p A o _ (a sp) =
fail



Specification (4/4)

solveNestedSp Nu s T'p A o [] (a sp') =
a (sp'lo])

solveNestedSp I'u I's Tp 6 (app t :: sp) (a sp') =
A a'. solveNestedSp INu 's T'p (A, a')
(invertArg Tu I's Tp Ao t (a' []))
sp (a sp')

solveNestedSp Nu I's T'p o (fst :: sp) (a sp')
(solveNestedSp Nu I's Tp 0 sp (a sp'), BOT)

solveNestedSp v 's Tp o (snd :: sp) (a sp')
(BOT, solveNestedSp I'u 's 'y 0 sp (a sp'))

solveNestedSp N'u I's T'p 0 _ (a sp') =
fail



Not explained here

Integration into NbE.
® |mplementation of partial substitution.

Support for unit n and typed inversion.
® Analogous generalization of pruning where we can prune dependencies
from inside nested II/3 types.



