Nested Pattern Unification

András Kovács¹ j.w.w. Rafaël Bocquet¹

¹Eötvös Loránd University

28 Aug 2023, Braga, 2nd Workshop on the Implementation of Type Systems

 $\alpha x_0 x_1 \dots x_n \stackrel{?}{=}$ rhs is solvable if

- 1 x_i are distinct bound vars.
- 2 rhs only depends on x_i bound vars.
- $\mathbf{3} \ \alpha$ does not occur in rhs.

Then $\alpha := \lambda x_0 x_1 \dots x_n$. rhs.

All major dependently typed languages use pattern unification with some extensions.

Reduce non-pattern problems to pattern ones. Examples:

1 η -contraction:

$$\alpha (\lambda x. fx) \stackrel{?}{=} \mathsf{rhs} \quad \Rightarrow \quad \alpha f \stackrel{?}{=} \mathsf{rhs}$$

2 Σ -elimination:

$$x: (a:A) \times B a \vdash \alpha (\text{fst } x) \stackrel{?}{=} \text{fst } x$$
$$\Rightarrow \quad a:A,b:B a \vdash \alpha a \stackrel{?}{=} a$$

$$\alpha : \mathbf{A} \times \mathbf{B} \to \mathbf{C} \vdash \alpha (\mathbf{a}, \mathbf{b}) \stackrel{?}{=} \mathbf{a}$$
$$\Rightarrow \quad \alpha' : \mathbf{A} \to \mathbf{B} \to \mathbf{C}, \alpha := \mathsf{uncurry} \, \alpha' \vdash \alpha' \, \mathbf{a} \, \mathbf{b} \stackrel{?}{=} \mathbf{a}$$

 η -contraction for Σ is expensive (needs conversion checks).

 $\Sigma\text{-elimination}$ is potentially expensive and unnecessarily $\eta\text{-long}.$

 $\alpha (\lambda x y. fy x) \stackrel{?}{=}$ rhs is not reducible to a pattern problem.

We directly solve a larger class of problems, called **nested pattern** problems.

Advantages:

- Conjecture: whenever *f* is a definitional isomorphism, α (*fx*) [?] = *x* is solvable as α := *f*⁻¹.
- A single pass on the spine and rhs is enough. No η -contraction, Σ -elimination or administrative metas are needed.

Implementations:

- https://github.com/AndrasKovacs/sett
- https://gitlab.com/RafaelBocquet/obstt

Basic idea:

- λ , pairing and projection is allowed in spines, recursively.
- In Γ ⊢ α spine [?] = rhs, rhs lives in Γ but the eventual solution is *closed* w.r.t. bound vars. So we need a substitution to make rhs depend only on the λ-bound vars in the solution.
- Recursing on the spine, we generate λ -s and pairings in the solution and also build the mentioned substitution.

It's not realistic to fully explain the algorithm in this talk so I'll focus on examples. I include a more detailed spec on the slides though.

Informally, we use names and distinguish two scopes by naming:

- x, y, z, f, g, h live in the **problem scope**, which is Γ in $\Gamma \vdash \alpha$ spine $\stackrel{?}{=}$ rhs.
- *a*, *b*, *c*, *d*, *e* live in the **solution scope**.

Informally, we use names and distinguish two scopes by naming:

- x, y, z, f, g, h live in the **problem scope**, which is Γ in $\Gamma \vdash \alpha$ spine $\stackrel{?}{=}$ rhs.
- *a*, *b*, *c*, *d*, *e* live in the **solution scope**.

Notation: $\Gamma \vdash \alpha x y \stackrel{a \ b}{=} x$ marks the solution scope binders already in the problem statement.

Informally, we use names and distinguish two scopes by naming:

- x, y, z, f, g, h live in the **problem scope**, which is Γ in $\Gamma \vdash \alpha$ spine $\stackrel{?}{=}$ rhs.
- *a*, *b*, *c*, *d*, *e* live in the **solution scope**.

Notation: $\Gamma \vdash \alpha x y \stackrel{a \ b}{=} x$ marks the solution scope binders already in the problem statement.

Here, pattern inversion yields $[x \mapsto a, y \mapsto b]$, and the solution is

$$\alpha := \lambda \text{ a } b. x[x \mapsto a, y \mapsto b]$$

which is $\alpha := \lambda a b. a$.

Simple pattern inversion: outputs a *partial* map from problem scope vars to solution scope vars.

Simple pattern inversion: outputs a *partial* map from problem scope vars to solution scope vars.

We generalize this to maps sending variables to certain partial values.

Partial values are generated by:

- Variables, λ , application, projection, pairing.
- A formal TOP and a BOT value, both inhabiting any type.

Simple pattern inversion: outputs a *partial* map from problem scope vars to solution scope vars.

We generalize this to maps sending variables to certain *partial values*.

Partial values are generated by:

- Variables, λ , application, projection, pairing.
- A formal TOP and a BOT value, both inhabiting any type.

Partial values have a partial ordering where TOP is top and BOT is bottom.

- If a meta solution contains TOP or BOT, that's a unification error.
- TOP signals an ambiguity from non-linearity, while BOT signals an out-of-scope dependency.

• To solve:
$$\alpha (fst^a x) \stackrel{?}{=} fst x$$
.

- To solve: $\alpha (fst^a x) \stackrel{?}{=} fst x$.
- We start with $\sigma := [x \mapsto BOT]$.

- To solve: $\alpha(\operatorname{fst}^{a} x) \stackrel{?}{=} \operatorname{fst} x$.
- We start with $\sigma := [x \mapsto BOT]$.
- We try to extend σ with [fst $x \mapsto a$].

- To solve: $\alpha(\operatorname{fst}^{a} x) \stackrel{?}{=} \operatorname{fst} x$.
- We start with $\sigma := [x \mapsto BOT]$.
- We try to extend σ with [fst $x \mapsto a$].
- This decomposes to $[x \mapsto (a, BOT)]$.

- To solve: $\alpha (fst^a x) \stackrel{?}{=} fst x$.
- We start with $\sigma := [x \mapsto BOT]$.
- We try to extend σ with [fst $x \mapsto a$].
- This decomposes to $[x \mapsto (a, BOT)]$.
- Now $\sigma \sqcup [x \mapsto (a, BOT)]$ is $[x \mapsto (a, BOT)]$.

- To solve: $\alpha(\operatorname{fst}^{a} x) \stackrel{?}{=} \operatorname{fst} x$.
- We start with $\sigma := [x \mapsto BOT]$.
- We try to extend σ with [fst $x \mapsto a$].
- This decomposes to $[x \mapsto (a, BOT)]$.
- Now $\sigma \sqcup [x \mapsto (a, BOT)]$ is $[x \mapsto (a, BOT)]$.
- We recurse on the spine, and the result will be under λa .

- To solve: $\alpha(\operatorname{fst}^{a} x) \stackrel{?}{=} \operatorname{fst} x$.
- We start with $\sigma := [x \mapsto BOT]$.
- We try to extend σ with [fst $x \mapsto a$].
- This decomposes to $[x \mapsto (a, BOT)]$.
- Now $\sigma \sqcup [x \mapsto (a, BOT)]$ is $[x \mapsto (a, BOT)]$.
- We recurse on the spine, and the result will be under λa .
- The rest of the spine is empty, so we return rhs substituted with σ .

- To solve: $\alpha(\operatorname{fst}^{a} x) \stackrel{?}{=} \operatorname{fst} x$.
- We start with $\sigma := [x \mapsto BOT]$.
- We try to extend σ with [fst $x \mapsto a$].
- This decomposes to $[x \mapsto (a, BOT)]$.
- Now $\sigma \sqcup [x \mapsto (a, BOT)]$ is $[x \mapsto (a, BOT)]$.
- We recurse on the spine, and the result will be under λa .
- The rest of the spine is empty, so we return rhs substituted with σ .
- Hence, the solution is λa . (fst x)[σ], that is, λa . a.

• To solve:
$$\alpha \overset{a}{x} \overset{b}{x} \overset{?}{=} x$$
.

• To solve:
$$\alpha \overset{a}{x} \overset{b}{x} \overset{?}{=} x$$
.

• We start again with $\sigma := [x \mapsto BOT]$.

• To solve:
$$\alpha \overset{a}{x} \overset{b}{x} \overset{?}{=} x$$
.

- We start again with $\sigma := [x \mapsto BOT]$.
- Processing the next spine entry, we get $[x \mapsto a]$.

• To solve:
$$\alpha \overset{a}{x} \overset{b}{x} \overset{?}{=} x$$
.

- We start again with $\sigma := [x \mapsto BOT]$.
- Processing the next spine entry, we get $[x \mapsto a]$.

• Next, we do
$$\sigma := \sigma \sqcup [x \mapsto b]$$
.

• To solve:
$$\alpha \overset{a}{x} \overset{b}{x} \overset{?}{=} x$$
.

- We start again with $\sigma := [x \mapsto BOT]$.
- Processing the next spine entry, we get $[x \mapsto a]$.
- Next, we do $\sigma := \sigma \sqcup [x \mapsto b]$.

• We get $[x \mapsto \text{TOP}]$ because the lub of distinct variables is TOP.

• To solve:
$$\alpha \overset{a}{x} \overset{b}{x} \overset{?}{=} x$$
.

- We start again with $\sigma := [x \mapsto BOT]$.
- Processing the next spine entry, we get $[x \mapsto a]$.
- Next, we do $\sigma := \sigma \sqcup [x \mapsto b]$.
- We get $[x \mapsto \text{TOP}]$ because the lub of distinct variables is TOP.
- Hence, the solution is $\lambda a b$. TOP, i.e. a non-linearity error.

• To solve: $\alpha (\lambda x y, fyx) \stackrel{?}{=} f.$

- To solve: $\alpha (\lambda x y, fyx) \stackrel{?}{=} f.$
- We try to decompose $[(\lambda x y. fy x) \mapsto a]$.

• To solve:
$$\alpha (\lambda x y, fyx) \stackrel{?}{=} f.$$

- We try to decompose $[(\lambda x y. fy x) \mapsto a]$.
- That gets us $x, y \vdash f_y^{b c} \mapsto axy$.

• To solve:
$$\alpha (\lambda x y, fyx) \stackrel{?}{=} f.$$

- We try to decompose $[(\lambda x y. fy x) \mapsto a]$.
- That gets us $x, y \vdash f_y^{b c} \mapsto axy$.
- This is a nested pattern problem!

• To solve:
$$\alpha (\lambda x y, fyx) \stackrel{?}{=} f.$$

- We try to decompose $[(\lambda x y. fy x) \mapsto a]$.
- That gets us $x, y \vdash f_y^{b c} \mapsto axy$.
- This is a nested pattern problem!
- Note that *f* is OK here in head position, but e.g. *x* would not be!

• To solve:
$$\alpha (\lambda x y, fyx) \stackrel{?}{=} f.$$

- We try to decompose $[(\lambda x y. fy x) \mapsto a]$.
- That gets us $x, y \vdash f_y^{b c} \mapsto axy$.
- This is a nested pattern problem!
- Note that f is OK here in head position, but e.g. x would not be!
- We'll see in the details later that *solvable* and *parameter* vars need to be distinguished.

• To solve:
$$\alpha (\lambda x y, fyx) \stackrel{?}{=} f.$$

- We try to decompose $[(\lambda x y. fy x) \mapsto a]$.
- That gets us $x, y \vdash f_y^{b c} \mapsto axy$.
- This is a nested pattern problem!
- Note that f is OK here in head position, but e.g. x would not be!
- We'll see in the details later that *solvable* and *parameter* vars need to be distinguished.
- Recursive solving gets us $[f \mapsto \lambda b c. a c b]$.

- To solve: $\alpha (\lambda x y, fyx) \stackrel{?}{=} f.$
- We try to decompose $[(\lambda x y. fy x) \mapsto a]$.
- That gets us $x, y \vdash f_y^{b c} \mapsto axy$.
- This is a nested pattern problem!
- Note that f is OK here in head position, but e.g. x would not be!
- We'll see in the details later that *solvable* and *parameter* vars need to be distinguished.
- Recursive solving gets us $[f \mapsto \lambda b c. a c b]$.
- This gets lub-ed to the top σ, so we get λ a b c. a c b as overall solution.

solve tries to produce a solution for $\Gamma \vdash \alpha$ spine $\stackrel{?}{=}$ rhs:

solve Γ α sp rhs := solveSp Γ • [X_i \mapsto BOT] α sp rhs

solveSp is a worker function that iterates through the spine and accumulates the partial substitution σ . Δ is the solution scope.

solveSp Γ Δ σ α sp rhs

invertArg tries to extend σ with the mapping $[t \mapsto a \text{ sp}']$. The problem scope Γ is split to three regions, "unsolvable" (Γ_u), "solvable" (Γ_s), and "parameters" (Γ_P). A nested pattern is only solvable if headed by a solvable variable.

invertArg $\Gamma_u \Gamma_s \Gamma_p \Delta \sigma t$ (a sp')

solveNestedSp produces a solution from a nested spine.

solveNestedSp $\Gamma_u \Gamma_s \Gamma_p \Delta \sigma$ sp (a sp')

Specification (2/4)

```
solve \Gamma \alpha sp rhs = solveSp \Gamma \cdot [x_i \mapsto BOT] sp rhs
```

```
solveSp \Gamma \Delta \sigma \alpha [] rhs =
rhs[\sigma, \alpha \mapsto BOT]
```

```
solveSp \Gamma \Delta \sigma \alpha (app t :: sp) rhs =
\lambda a. solveSp \Gamma (\Delta, a) (invertArg • \Gamma • \Delta \sigma t (a [])) \alpha sp rhs
```

```
solveSp \Gamma \Delta \sigma \alpha (fst :: sp) rhs =
(solveSp \Gamma \Delta \sigma \alpha sp rhs, freshMeta \Delta)
```

```
solveSp \Gamma \Delta \sigma \alpha (snd :: sp) rhs =
(freshMeta \Delta, solveSp \Gamma \Delta \sigma \alpha sp rhs)
```

```
solveSp Γ Δ σ α _ rhs =
fail
```

Specification (3/4)

```
invertArg \Gamma_u \Gamma_s \Gamma_p \Delta \sigma (x sp) (a sp')
    | x \in \Gamma_u \vee x \in \Gamma_p =
      fail
   | x ∈ Г₅ =
       \sigma \sqcup [x \mapsto \text{solveNestedSp} (\Gamma_u, \Gamma_s) \Gamma_p \bullet \Delta \sigma \text{ sp} (a \text{ sp'})]
invertArg \Gamma_u \Gamma_s \Gamma_p \Delta \sigma (t, u) (a sp) =
   let \sigma = invertArg \Gamma_u \Gamma_s \Gamma_p \Delta \sigma t (a (sp :: .fst)) in
   invertArg \Gamma_u \Gamma_s \Gamma_p \Delta \sigma u (a (sp :: .snd))
invertArg \Gamma_u \Gamma_s \Gamma_p \Delta \sigma (\lambda x. t) (a sp) =
   invertArg \Gamma_u \Gamma_s (\Gamma_p, x) \Delta t (a (sp :: app x))
invertArg \Gamma_u \Gamma_s \Gamma_p \Delta \sigma (a sp) =
   fail
```

```
solveNestedSp \Gamma_u \Gamma_s \Gamma_p \Delta \sigma [] (a sp') =
   a (sp'[σ])
solveNestedSp \Gamma_u \Gamma_s \Gamma_p \sigma (app t :: sp) (a sp') =
   \lambda a'. solveNestedSp \Gamma_{u} \Gamma_{s} \Gamma_{p} (\Delta, a')
                                   (invertArg \Gamma_u \Gamma_s \Gamma_p \Delta \sigma t (a' []))
                                   sp (a sp')
solveNestedSp \Gamma_u \Gamma_s \Gamma_p \sigma (fst :: sp) (a sp') =
   (solveNestedSp \Gamma_{u} \Gamma_{s} \Gamma_{p} \sigma sp (a sp'), BOT)
solveNestedSp \Gamma_u \Gamma_s \Gamma_p \sigma (snd :: sp) (a sp') =
   (BOT, solveNestedSp \Gamma_u \Gamma_s \Gamma_p \sigma sp (a sp'))
solveNestedSp \Gamma_u \Gamma_s \Gamma_p \sigma (a sp') =
```

fail

- Integration into NbE.
- Implementation of partial substitution.
- Support for unit η and typed inversion.
- Analogous generalization of *pruning* where we can prune dependencies from inside nested Π/Σ types.