
Nested Pattern Unification

András Kovács and Rafaël Bocquet

Eötvös Loránd University

Miller’s pattern unification algorithm [Mil91] is widely used in implementations of depen-
dently typed languages. In practice, the basic algorithm is usually extended in several ways,
for example with some support for Σ-types with η-rule. Abel and Pientka described a way to
handle Σ in unification by getting rid of it [AP11]: currying and the “type-theoretic axiom of
choice”1 can be repeadetly applied to eliminate Σ from unification problems. Agda uses this
approach, although not to the full extent described by Abel and Pientka.

However, Σ-elimination can be inefficient and produce unnecessarily η-long solutions. Also,
it does not handle the definitional isomorphism ((a : A)(b : B) → C a b) ≃ ((b : B)(a : A) →
C a b). For example, assuming a metavariable α and a bound variable f , Agda cannot solve
α (flip f) =? f with α := flip.

We propose a new algorithm, called nested pattern unification, which handles Σ efficiently
and directly, without Σ-elimination or η-reductions, and also handles permutations of record
fields and function inputs. We conjecture that for a bound variable x and any definitional
isomorphism g, the algorithm solves α (g x) =?x with α := g−1.

The algorithm. Miller’s pattern unification problems are of the form ασ =? t, where σ is an
application spine consisting of distinct bound variables. In this case, there is a partial inverse
substitution σ−1 such that the problem is solvable if t[σ−1] is defined and α does not occur
in t. Here, σ−1 is always a partial map from variables to variables (i.e. a partial renaming).
We generalize this to maps from variables to partial terms in a negative linear fragment of the
type theory, consisting of linear λ, pairing, variables, projections, applications and undefined
values. We build σ−1 by starting with a completely undefined map and extending it with the
“inversion” of each term in σ. However, terms in σ can be themselves neutral spines, headed by
bound variables that we want to map to something in σ−1. At such points, we try to compute
a mapping by recursive pattern unification. Hence the term “nested pattern unification”. The
precise specification is a bit complicated, so we trace a particular example below.

1. Assuming a bound variable f , we aim to solve α (λx y. f y x) =?f .

2. We try to invert λx y. f y x by mapping it to a fresh variable a. Goal: (λx y. f y x) 7→ a.

3. We decompose the inversion problem to ∀x y. f y x 7→ a x y. Here ∀ is a metatheoretic
quantifier.

4. f y x 7→ a x y is now a nested pattern.

5. We invert the spine y x to [x 7→ b, y 7→ c] for fresh b, c. We produce the solution [f 7→
λ b c. a c b].

6. Now [f 7→ λ b c. a c b] is the top-level partial inverse substitution, so we solve α to
λ a. f [f 7→ λ b c. a c b], which is λ a b c. a c b.

1That is, ((a : A) → (b : B a)× C a b) ≃ ((b : (a : A) → B a)× ((a : A) → C a (b a))).

For an example which involves a partial term, consider α (fstx) =? (fstx). Here we decompose
fstx 7→ a as x 7→ (a, UNDEF), yielding the solution α := λ a. a. The UNDEF disappears after we
substitute the right hand side; but sndx there would have resulted in an error. Thus, UNDEF
represents “out of scope” errors.

We implemented two slightly different versions of the algorithm, one in OCaml [Boc22] and
one in Haskell [KB22], in experimental implementations of observational type theories. The
implementations are tightly integrated with normalization-by-evaluation and they do not use
global fresh name generation or naive term substitution.

References

[AP11] Andreas Abel and Brigitte Pientka. Higher-order dynamic pattern unification for dependent
types and records. In C.-H. Luke Ong, editor, Typed Lambda Calculi and Applications -
10th International Conference, TLCA 2011, Novi Sad, Serbia, June 1-3, 2011. Proceedings,
volume 6690 of Lecture Notes in Computer Science, pages 10–26. Springer, 2011. doi:10.

1007/978-3-642-21691-6_5.

[Boc22] Rafaël Bocquet, 2022. URL: https://gitlab.com/RafaelBocquet/obstt.

[KB22] András Kovács and Rafaël Bocquet, 2022. URL: https://github.com/AndrasKovacs/sett.

[Mil91] Dale Miller. A logic programming language with lambda-abstraction, function variables, and
simple unification. J. Log. Comput., 1(4):497–536, 1991. doi:10.1093/logcom/1.4.497.

2

https://doi.org/10.1007/978-3-642-21691-6_5
https://doi.org/10.1007/978-3-642-21691-6_5
https://gitlab.com/RafaelBocquet/obstt
https://github.com/AndrasKovacs/sett
https://doi.org/10.1093/logcom/1.4.497

