Nested Pattern Unification

András Kovács and Rafaël Bocquet

Eötvös Loránd University
Miller's pattern unification algorithm [Mil91] is widely used in implementations of dependently typed languages. In practice, the basic algorithm is usually extended in several ways, for example with some support for Σ-types with η-rule. Abel and Pientka described a way to handle Σ in unification by getting rid of it [AP11]: currying and the "type-theoretic axiom of choice" ${ }^{1}$ can be repeadetly applied to eliminate Σ from unification problems. Agda uses this approach, although not to the full extent described by Abel and Pientka.

However, Σ-elimination can be inefficient and produce unnecessarily η-long solutions. Also, it does not handle the definitional isomorphism $((a: A)(b: B) \rightarrow C a b) \simeq((b: B)(a: A) \rightarrow$ $C a b)$. For example, assuming a metavariable α and a bound variable f, Agda cannot solve $\alpha($ flip $f)=? f$ with $\alpha:=$ flip.

We propose a new algorithm, called nested pattern unification, which handles Σ efficiently and directly, without Σ-elimination or η-reductions, and also handles permutations of record fields and function inputs. We conjecture that for a bound variable x and any definitional isomorphism g, the algorithm solves $\alpha(g x)=? x$ with $\alpha:=g^{-1}$.

The algorithm. Miller's pattern unification problems are of the form $\alpha \sigma=$? t, where σ is an application spine consisting of distinct bound variables. In this case, there is a partial inverse substitution σ^{-1} such that the problem is solvable if $t\left[\sigma^{-1}\right]$ is defined and α does not occur in t. Here, σ^{-1} is always a partial map from variables to variables (i.e. a partial renaming). We generalize this to maps from variables to partial terms in a negative linear fragment of the type theory, consisting of linear λ, pairing, variables, projections, applications and undefined values. We build σ^{-1} by starting with a completely undefined map and extending it with the "inversion" of each term in σ. However, terms in σ can be themselves neutral spines, headed by bound variables that we want to map to something in σ^{-1}. At such points, we try to compute a mapping by recursive pattern unification. Hence the term "nested pattern unification". The precise specification is a bit complicated, so we trace a particular example below.

1. Assuming a bound variable f, we aim to solve $\alpha(\lambda x y . f y x)=? f$.
2. We try to invert $\lambda x y . f y x$ by mapping it to a fresh variable a. Goal: $(\lambda x y . f y x) \mapsto a$.
3. We decompose the inversion problem to $\forall x y$. $f y x \mapsto a x y$. Here \forall is a metatheoretic quantifier.
4. $f y x \mapsto a x y$ is now a nested pattern.
5. We invert the spine $y x$ to $[x \mapsto b, y \mapsto c]$ for fresh b, c. We produce the solution $[f \mapsto$ $\lambda b c . a c b]$.
6. Now $[f \mapsto \lambda b c . a c b]$ is the top-level partial inverse substitution, so we solve α to $\lambda a . f[f \mapsto \lambda b c . a c b]$, which is $\lambda a b c . a c b$.
[^0]For an example which involves a partial term, consider α (fst x) $=$? (fst x). Here we decompose fst $x \mapsto a$ as $x \mapsto(a$, UNDEF), yielding the solution $\alpha:=\lambda a$. a. The UNDEF disappears after we substitute the right hand side; but snd x there would have resulted in an error. Thus, UNDEF represents "out of scope" errors.

We implemented two slightly different versions of the algorithm, one in OCaml [Boc22] and one in Haskell [KB22], in experimental implementations of observational type theories. The implementations are tightly integrated with normalization-by-evaluation and they do not use global fresh name generation or naive term substitution.

References

[AP11] Andreas Abel and Brigitte Pientka. Higher-order dynamic pattern unification for dependent types and records. In C.-H. Luke Ong, editor, Typed Lambda Calculi and Applications 10th International Conference, TLCA 2011, Novi Sad, Serbia, June 1-3, 2011. Proceedings, volume 6690 of Lecture Notes in Computer Science, pages 10-26. Springer, 2011. doi:10. 1007/978-3-642-21691-6_5.
[Boc22] Rafaël Bocquet, 2022. URL: https://gitlab.com/RafaelBocquet/obstt.
[KB22] András Kovács and Rafaël Bocquet, 2022. URL: https://github.com/AndrasKovacs/sett.
[Mil91] Dale Miller. A logic programming language with lambda-abstraction, function variables, and simple unification. J. Log. Comput., 1(4):497-536, 1991. doi:10.1093/logcom/1.4.497.

[^0]: ${ }^{1}$ That is, $((a: A) \rightarrow(b: B a) \times C a b) \simeq((b:(a: A) \rightarrow B a) \times((a: A) \rightarrow C a(b a)))$.

