
Programming With Two-Level Type Theory

András Kovács

University of Gothenburg & Chalmers University of Technology

29th Jan 2026, TFP 26, Odense

What is this about

Unnamed WIP language for high-level high-performance programming.

• High-level: FP abstractions, generic programming, strong types.
• High-performance: control over code generation, memory layout, allocation.

Non-goal: “systems” programming.

• We’ll have substantial RTS with GC & full memory safety.

Past implementations: smaller demo [Kov22], Agda & Typed TH embedding [Kov24]
Currently in early stage of development: https://github.com/AndrasKovacs/2ltt-impl

https://github.com/AndrasKovacs/2ltt-impl

What is this about

Unnamed WIP language for high-level high-performance programming.

• High-level: FP abstractions, generic programming, strong types.
• High-performance: control over code generation, memory layout, allocation.

Non-goal: “systems” programming.

• We’ll have substantial RTS with GC & full memory safety.

Past implementations: smaller demo [Kov22], Agda & Typed TH embedding [Kov24]
Currently in early stage of development: https://github.com/AndrasKovacs/2ltt-impl

https://github.com/AndrasKovacs/2ltt-impl

What is this about

Unnamed WIP language for high-level high-performance programming.

• High-level: FP abstractions, generic programming, strong types.
• High-performance: control over code generation, memory layout, allocation.

Non-goal: “systems” programming.

• We’ll have substantial RTS with GC & full memory safety.

Past implementations: smaller demo [Kov22], Agda & Typed TH embedding [Kov24]
Currently in early stage of development: https://github.com/AndrasKovacs/2ltt-impl

https://github.com/AndrasKovacs/2ltt-impl

Motivation

I’m interested in high-performance implementations of dependent type systems.

GHC Haskell has been my choice for performance:
• GC focused on throughput, OK machine code output, unboxed types, compact regions,

efficient laziness (for the few cases when it’s needed).

There are some performance issues or significant inconveniences in every other language I
know.

Still: performance issues with GHC too - motivating this research.

The GHC pipeline

Source Core ...Elaboration

Aggressive
general−purpose optimization

Compilation

The optimizer is
• Complex.
• Unstable across GHC versions.
• Supports limited user control.

A lot of idiomatic Haskell relies on it for acceptable performance.

GHC example 1

Source:

f :: Reader Bool Int
f = do

b <- ask
if b then return 10

else return 20

-O0 Core output:

dict1 :: Monad (Reader Int)
dict1 = MkMonad ...

dict2 :: MonadReader (Reader Int)
dict2 = MkMonadReader ...

f :: Reader Bool Int
f = (>>=) dict1 (ask dict2) (\b ->
case b of True -> return dict1 10

False -> return dict1 20)

GHC example 1

Source:

f :: Reader Bool Int
f = do

b <- ask
if b then return 10

else return 20

-O0 Core output:

dict1 :: Monad (Reader Int)
dict1 = MkMonad ...

dict2 :: MonadReader (Reader Int)
dict2 = MkMonadReader ...

f :: Reader Bool Int
f = (>>=) dict1 (ask dict2) (\b ->
case b of True -> return dict1 10

False -> return dict1 20)

GHC example 2

mapM is third-order & rank-2 polymorphic, but almost all use cases should compile to first-order
monomorphic code.

mapM :: Monad m => (a -> m b) -> m [a] -> m [b]

Revised pipeline

Source Metaprograms Object core ...Elaboration Compile−time execution
(unstaging)

Optimization

Compilation

The metalanguage and the object language should be different.
• Simple object language supports better compilation & performance.
• Dependent type theory as metalanguage.

Main design question: explicit control in object language vs. optimizations in the compiler.
• The object language can be tedious as long as we can address tedium with

metaprogramming!

Revised pipeline

Source Metaprograms Object core ...Elaboration Compile−time execution
(unstaging)

Optimization

Compilation

The metalanguage and the object language should be different.
• Simple object language supports better compilation & performance.
• Dependent type theory as metalanguage.

Main design question: explicit control in object language vs. optimizations in the compiler.

• The object language can be tedious as long as we can address tedium with
metaprogramming!

Revised pipeline

Source Metaprograms Object core ...Elaboration Compile−time execution
(unstaging)

Optimization

Compilation

The metalanguage and the object language should be different.
• Simple object language supports better compilation & performance.
• Dependent type theory as metalanguage.

Main design question: explicit control in object language vs. optimizations in the compiler.
• The object language can be tedious as long as we can address tedium with

metaprogramming!

Setup

Universes for stages:
• Set : Set contains dependent meta-level types.
• Ty : Set contains simple object-level types.
• ValTy : Set and CompTy : Set are subtypes of Ty (polarization!).

Interaction between stages:
• Lifting: for A : Ty, we have ⇑A : Set, as the type of metaprograms that produce

A-typed object programs.
• Quoting: for t : A and A : Ty, we have <t> : ⇑A as the metaprogram which

immediately returns t.
• Splicing: for t : ⇑A, we have ~t : A which runs the metaprogram t and inserts its

output in some object-level code.
• Definitional equalities: ~<t> ≡ t and <~t> ≡ t.

Setup

Universes for stages:
• Set : Set contains dependent meta-level types.
• Ty : Set contains simple object-level types.
• ValTy : Set and CompTy : Set are subtypes of Ty (polarization!).

Interaction between stages:
• Lifting: for A : Ty, we have ⇑A : Set, as the type of metaprograms that produce

A-typed object programs.
• Quoting: for t : A and A : Ty, we have <t> : ⇑A as the metaprogram which

immediately returns t.
• Splicing: for t : ⇑A, we have ~t : A which runs the metaprogram t and inserts its

output in some object-level code.
• Definitional equalities: ~<t> ≡ t and <~t> ≡ t.

The object level

An object-level program:

data List (A : ValTy) := nil | cons@Hp A (List A)

f : List Int → List Int
f xs := case xs of
nil → nil
cons x xs → cons (x + 10) (f xs)

Polarization:
• Functions have value arguments and are computations.
• ADTs have value fields and are values.

The object level

Explicit type former for closures:

Close : CompTy → ValTy
close : A → Close A
open : Close A → A

Mapping with closures:

map : Close (Int → Int) → List Int → List Int
map f xs = case xs of
nil → nil
cons x xs → cons (open f x) (map f xs)

Closures are surprisingly rarely needed in practical programming!

Staging

inlineInt : ⇑Int
inlineInt = <100>

myInt : Int myInt : Int
myInt := 200 myInt := 200

unstage
id : {A : Ty} → ⇑A → ⇑A ==>
id x = x

f : Int → Int f : Int → Int
f x := x + ~inlineInt f x := x + 100

g : Int → Int g : Int → Int
g x := ~(id <x>) g x := x

Staging

Fully explicit map:

map : {A B : ValTy} → (⇑A → ⇑B) -> ⇑(List A) → ⇑(List B)
map {A}{B} f as = <
let go : List ~A → List ~B

go as := case as of
nil → nil {~B}
cons a as → cons {~B} ~(f <a>) (go as)

go ~as>

monoMap : List Int -> List Int
monoMap xs := ~(map (λ x. <~x + 10>) <xs>)

Staging

Unstaged output:

monoMap : List Int → List Int
monoMap xs :=
let go : List Int → List Int

go as := case as of
nil → nil {Int}
cons a as → cons {Int} (a + 10) (go as)

go xs

Inference & elaboration

Quotes and splices are almost always inferable!

map : {A B : ValTy} → (A → B) → List A → List B
map f as =
let go as := case as of

nil → nil
cons a as → cons (f a) (go as)

go as

monoMap : List Int → List Int
monoMap := map (λ x. x + 10)

How to compile: monads

Not easy! We want
• guaranteed closure-freedom for everything except CPS monads
• guaranteed fusion for straight-line code (e.g. no intermediate constructor allocations in

Maybe)
• proper handling of join points and tail calls
• modest extra noise compared to Haskell

Ingredients of the solution:
• The bulk of the logic is in a plain library.
• We use type classes & implicit coercions.
• Extra desugaring logic in do-blocks.
• Tail calls are handled by the downstream optimizer.

How to compile: monads

Not easy! We want
• guaranteed closure-freedom for everything except CPS monads
• guaranteed fusion for straight-line code (e.g. no intermediate constructor allocations in

Maybe)
• proper handling of join points and tail calls
• modest extra noise compared to Haskell

Ingredients of the solution:
• The bulk of the logic is in a plain library.
• We use type classes & implicit coercions.
• Extra desugaring logic in do-blocks.
• Tail calls are handled by the downstream optimizer.

Monads: the bulk of the logic

Monads only exist at compile time.

class Monad (M : Set → Set) where
pure : {A : Set} → A → M A
(>>=) : {A B : Set} → M A → (A → M B) → M B

Recipe for porting over a transformer stack from Haskell:
1 We have an object-level type, same as in Haskell (but with polarities).
2 We have a meta-level transformer stack, which has an extra monad at the bottom, having

code generation as an effect.
3 We define back-and-forth conversion between the object-level type and the metamonad.

The Gen monad

record Gen (A : Set) : Set = gen {unGen : {R : Ty} → (A → ⇑R) → ⇑R}

instance Monad Gen where ...

runGen : Gen ⇑A → ⇑A
runGen (gen f) = f id

class Monad M => MonadGen M where
liftGen : Gen A → M A

genLet : MonadGen M => ⇑A → M ⇑A
genLet a = liftGen λ k. <let x := ~a; ~(k <x>)>

The Gen monad

f : Int f : Int
f := ~(runGen do unstage f :=
x ← genLet <10 + 20> ==> let x := 10 + 20
y ← genLet <~x * 10> let y := x * 10
pure <~x + ~y>) x + y

Case splitting in MonadGen

data BoolM : Set = trueM | falseM
data Bool : ValTy := true | false

down : BoolM → ⇑Bool
down x = case x of trueM → <true>; falseM → <false>

up : ⇑Bool → BoolM
up = ? -- impossible!

However:

up : MonadGen M => ⇑Bool → M BoolM
up b = liftGen λ k. <case ~b of true → ~(k trueM); false → ~(k falseM)>

Case splitting in MonadGen

data BoolM : Set = trueM | falseM
data Bool : ValTy := true | false

down : BoolM → ⇑Bool
down x = case x of trueM → <true>; falseM → <false>

up : ⇑Bool → BoolM
up = ? -- impossible!

However:

up : MonadGen M => ⇑Bool → M BoolM
up b = liftGen λ k. <case ~b of true → ~(k trueM); false → ~(k falseM)>

Case splitting in MonadGen

We add extra desugaring in MonadGen do-blocks for case splitting.

f : Bool → Bool f : Bool → Bool
f b := runGen do elaborate f b := ~(runGen do
case b of ==> b ← up
true → pure false case b of
false → pure true trueM → pure <false>

falseM → pure <true>)

Every object-level case split can be handled analogously!

Monads in general

Example: conversion between object-level type and a meta-monad.

⇑(StateT Int (ReaderT Bool Identity) A)
↑ ↓

StateTM (⇑Int) (ReaderTM (⇑Bool) Gen) (⇑A)

Generally: this conversion can be defined by recursion on the transformer stack (using e.g.
typeclasses) [Kov24].

Monads in general

Code example:

M : Ty
M = StateT Int (ReaderT Bool Identity)

f : M () f : M ()
f := do elab + f := stateT λ s. readerT λ r.
b <- ask unstage case r of
n <- get ==> true → let s' := s + 10
case b of identity ((), s')
true → put $ n + 10 false → let s' := s * 10
false → put $ n * 10 identity ((), s')

Monads in general

• A modest amount of extra noise compared to Haskell (but no native implementation yet!)
• All of mtl works. Closures are only needed in ContT.
• Note: Reader and State are computation types, so we need to wrap them in Close to

store them in data structures.

Memory layout control

All constructors are unboxed by default.

data Pair (A B : ValTy) := pair A B
data Sum (A B : ValTy) := left A | right B

Recursive constructors must be guarded by a pointer to a region. Hp is the general GC-d heap.

data List A := nil | cons@Hp A (List A)

Weird sum type with just one unboxed constructor:

data Sum A B := left A | right@Hp B

Tag-free GC & bit-stealing

GC is almost tag-free: only 1 bit metadata per heap object.

Bit-stealing: any data can be stored in unused bits in pointers or constructor fields.

Large space savings compared to pretty much any managed RTS language.

Tag-free GC & bit-stealing
Example: pure lambda terms with 32-bit variables.

data Tm := var UInt32 | app@Hp Tm Tm | lam@Hp Tm

Layout of app (var 0) (var 1)

| app | ptr | -- 1 word
↓

| var | 0 | var | 1 | -- 2 words

In GHC:

| app | ptr | -- 1 word
↓

| app | ptr | ptr | -- 3 words
↓ ↓

| var | 0 | | var | 1 | -- 4 words

Tag-free GC & bit-stealing

Implementation: explored back in the 90s [Tol94].

In a simple type theory, it’s enough to know the types (memory layouts) of GC roots.

For each monotype, we generate code for GC scanning & copying.

Only stack frames need to store runtime type information about roots.

Regions

Location : Set
Hp : Location
Region : Set

There’s implicit coercion from Region to Location. The object language supports dependent
functions of the form (R : Region) →

Lists with cons cells in a specified location:

data List (L : Location) (A : ValTy) := nil | cons@L A (List L A)

Regions

Example: list in a local region.

sum : {R : Region} → List R Int → Int
sum xs := case xs of nil → 0; cons x xs → x + sum xs

countDown : {R : Region} → Int → List R Int
countDown x := case x of 0 → nil

n → cons x (countDown (x - 1))

f : Int → Int
f x :=
let R : Region
let xs : List R Int := countDown x
sum xs

Type-directed GC scanning

Example 1: if a list contains no heap pointers, GC doesn’t touch it!

Why? Assume we have xs : List R Int in scope where R : Region.

The region R itself is present at runtime, and it serves as a GC root for the whole region.

Since the whole region is kept alive by the R reference, there’s no need to scan the list.

Type-directed GC scanning

Example 1: if a list contains no heap pointers, GC doesn’t touch it!

Why? Assume we have xs : List R Int in scope where R : Region.

The region R itself is present at runtime, and it serves as a GC root for the whole region.

Since the whole region is kept alive by the R reference, there’s no need to scan the list.

Type-directed GC scanning

Example 1: if a list contains no heap pointers, GC doesn’t touch it!

Why? Assume we have xs : List R Int in scope where R : Region.

The region R itself is present at runtime, and it serves as a GC root for the whole region.

Since the whole region is kept alive by the R reference, there’s no need to scan the list.

Type-directed GC scanning

Example 1: if a list contains no heap pointers, GC doesn’t touch it!

Why? Assume we have xs : List R Int in scope where R : Region.

The region R itself is present at runtime, and it serves as a GC root for the whole region.

Since the whole region is kept alive by the R reference, there’s no need to scan the list.

Type-directed GC scanning

Example 2: let’s have data HpPtr A := box@Hp A and consider List R (HpPtr Int).

GC scans values of List R (HpPtr Int) because it needs to scan the general heap pointers
inside. But it doesn’t copy the list cells.

Example 3: List R (Close (Int → Int)). Closures can capture arbitrary data, including
heap pointers, so we also need to scan them!

Example 4: List Hp Int. The cons cells are on the general heap, so we scan and possibly
copy everything.

Type-directed GC scanning

Example 2: let’s have data HpPtr A := box@Hp A and consider List R (HpPtr Int).

GC scans values of List R (HpPtr Int) because it needs to scan the general heap pointers
inside. But it doesn’t copy the list cells.

Example 3: List R (Close (Int → Int)). Closures can capture arbitrary data, including
heap pointers, so we also need to scan them!

Example 4: List Hp Int. The cons cells are on the general heap, so we scan and possibly
copy everything.

Type-directed GC scanning

Example 2: let’s have data HpPtr A := box@Hp A and consider List R (HpPtr Int).

GC scans values of List R (HpPtr Int) because it needs to scan the general heap pointers
inside. But it doesn’t copy the list cells.

Example 3: List R (Close (Int → Int)). Closures can capture arbitrary data, including
heap pointers, so we also need to scan them!

Example 4: List Hp Int. The cons cells are on the general heap, so we scan and possibly
copy everything.

Type-directed GC scanning

Example 2: let’s have data HpPtr A := box@Hp A and consider List R (HpPtr Int).

GC scans values of List R (HpPtr Int) because it needs to scan the general heap pointers
inside. But it doesn’t copy the list cells.

Example 3: List R (Close (Int → Int)). Closures can capture arbitrary data, including
heap pointers, so we also need to scan them!

Example 4: List Hp Int. The cons cells are on the general heap, so we scan and possibly
copy everything.

Existential regions

data InSomeRegion (L : Location) (F : Region → ValTy) :=
inSomeRegion@L (R : Region) (F R)

We can also hash regions and compare for them equality.

So we can store regions in data structures and manage them at runtime.

The more we know about lifetimes, the more we can speed up GC by moving data into
regions.

If we don’t care, we can ignore regions with no burden on programmers.

Related

1. GHC compact regions [YCA+15]
• We can create compact regions.
• There’s a primop to deeply copy GHC objects into the region.
• Hence: a compact region only contains internal pointers.
• GC doesn’t scan regions. A region is alive as long as any object in it is alive.
• Very important in Agda!

2. Rust lifetimes
• Deterministic & precise tracking of where objects get destroyed.
• Sub-structural typing.

Related

1. GHC compact regions [YCA+15]
• We can create compact regions.
• There’s a primop to deeply copy GHC objects into the region.
• Hence: a compact region only contains internal pointers.
• GC doesn’t scan regions. A region is alive as long as any object in it is alive.
• Very important in Agda!

2. Rust lifetimes
• Deterministic & precise tracking of where objects get destroyed.
• Sub-structural typing.

The problem with sub-structural typing

We don’t know how to make it work nicely with staging.

Consider an application rule for linear functions:

Γ ⊢ t : A ⊸ B Δ ⊢ u : A
──────────────────────────

Γ,Δ ⊢ t u : B

The semantic (operational) meaning of ⇑A → ⇑B in 2LTT:
• We map object term to object terms in arbitrary object contexts.
• The mapping commutes with substitutions.

We can’t inhabit ⇑(A ⊸ B) → ⇑A → ⇑B. No idea if the free variables are disjoint.

Structuralizing things

1. Massage sub-structural features into structural shape
• Erasure control by Constantine Theocharis (unpublished).
• Closure capture control by AK (unpublished).

2. Other structural features
• ST monad, monadic regions.
• Disentanglement typing for thread-local GC [MBXW26].

Further topics

• Staged fusion.
• IR optimizations.
• Backend compilation, LLVM.

Thank you!

Further topics

• Staged fusion.
• IR optimizations.
• Backend compilation, LLVM.

Thank you!

András Kovács.
Staged compilation with two-level type theory.
Proc. ACM Program. Lang., 6(ICFP):540–569, 2022.

András Kovács.
Closure-free functional programming in a two-level type theory.
Proc. ACM Program. Lang., 8(ICFP):659–692, 2024.

Alexandre Moine, Stephanie Balzer, Alex Xu, and Sam Westrick.
Typedis: A type system for disentanglement.
Proc. ACM Program. Lang., 10(POPL), January 2026.

Andrew P. Tolmach.
Tag-free garbage collection using explicit type parameters.
In Robert R. Kessler, editor, Proceedings of the 1994 ACM Conference on LISP and Functional Programming,
Orlando, Florida, USA, 27-29 June 1994, pages 1–11. ACM, 1994.
Edward Z. Yang, Giovanni Campagna, Ömer S. Agacan, Ahmed El-Hassany, Abhishek Kulkarni, and Ryan R.
Newton.
Efficient communication and collection with compact normal forms.
In Kathleen Fisher and John H. Reppy, editors, Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2015, Vancouver, BC, Canada, September 1-3, 2015, pages
362–374. ACM, 2015.

