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CHAPTER 1

Introduction

This thesis develops the usage of certain type theories as specification languages for algebraic
theories and inductive types.

Type theories have emerged as popular metatheoretic settings for mechanized mathematics.
One reason is that the field of type theory is generally aware of the issue of overheads in
representation, and it is a common endeavor to search for concise “synthetic” ways to talk
about different areas of mathematics. In type theory, it is a virtue to be able to directly say
what we mean, and in a way such that simple-minded computers are able to verify it.

Algebraic theories are certain mathematical structures which are especially well-behaved,
and which are ubiquitous in mathematics, such as groups or categories. In type theories,
inductive types are certain freely generated (initial) models of algebraic theories. Inductive
types are a core feature in implementations of type theories, widely used in mathematical
formalization, but also as the primary way to define the data structures which are used in
programming.

This thesis observes that if we are to specify more complicated algebraic theories, dependent
type theories provide the natural tool to manage complexities. The expressive power of type
theory which makes it suitable as a foundation for mechanized mathematics, also proves useful
for the more specialized task of specifying algebraic signatures.

There is a trade-off between the complexity of a mathematical language and the ease of usage
of the language. Minimal languages are convenient to reason about and develop metatheory
for, but they often require an excessive amount of boilerplate to work in. However, it is a
worthwhile effort to try to move towards the Pareto frontier of this trade-off. We believe that
the current thesis makes progress in this respect.

Our signatures are useful in broader mathematical contexts, but we are also concerned with
potential implementation in proof assistants. Although it is unlikely that our signatures can be
deployed in practice exactly as they are, they should be still helpful as formal bases of practical
implementations.

1.1 Overview

In Chapter 2, we present a minimal example of a type theory of signatures. This allows
specifying single-sorted signatures without equations. The purpose of the chapter is didactic.
We develop just enough semantics to get notions of initiality and induction for algebras. We

1



2 1.2. HOW TO READ THIS THESIS

also present a term algebra construction: this shows that the initial algebra for each signature
can be constructed from the syntax of signatures itself.

In Chapter 3 we describe a metatheoretic setting which is often used in the thesis. This is
two-level type theory [ACKS19]. It allows us to develop general semantics for signatures, while
still working inside a convenient type theory. As a demonstration, we generalize the semantics
from Chapter 2 so that it is given internally to arbitrary categories-with-families. As a special
case, signatures can be interpreted in arbitrary categories with finite products.

In Chapter 4 we describe finitary quotient inductive-inductive signatures. These are close
to generalized algebraic theories [Car86] in expressive power. In particular, most type theories
themselves can be specified with finitary quotient inductive-inductive signatures. We signif-
icantly expand the semantics of signatures, now for each signature we provide a category of
algebras with certain extra structure, which is equivalent to having finite limits. This allows
us to prove for each signature the equivalence of initiality and induction. Also, owing to two-
level type theory, signatures can be interpreted internally to any category with finite limits.
Additionally

• We present a term algebra construction.

• We show that morphisms of signatures are interpreted as right adjoint functors in the
semantics.

• We present how self-description of signatures can be exploited to minimize metatheoretic
assumptions.

• For certain fragments of the theory of signatures, we describe ways to construct initial
algebras from simpler type formers.

In Chapter 5, we describe infinitary quotient inductive-inductive signatures. These allow
specification of infinitely branching trees (as initial algebras). We adapt the semantics from
the previous chapter. We also revisit term models, left adjoints of signature morphisms and
self-description of signatures. Self-description in particular is significantly strengthened, since
the full theories of signatures in Chapters 4-5 can be now described using infinitary quotient
inductive-inductive signatures. We also describe how to build semantics of signatures internally
to the theory of signatures itself. For example, this means that for each signature, algebra
morphisms are also specified with a signature. The full semantics can be internalized in the
theory of signatures in this manner; this is useful for building new signatures in a generic way.

In Chapter 6, we describe higher inductive-inductive signatures. These differ from the pre-
vious signatures mostly in their intended semantics, whose context is now homotopy type the-
ory [Uni13], and which allows specified equalities to be proof-relevant. The higher-dimensional
generalization of types and equalities makes semantics more complicated, so we only present
enough semantics to specify notions of initiality and induction for each signature. Additionally,
we consider two different notions of algebra morphisms: one preserves structure strictly (up to
definitional equality), while the other preserves structure up to paths.

1.2 How to Read This Thesis

We list several general references which could be helpful for readers.
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• It is useful to have some user experience with a type-theory-based proof assistant or pro-
gramming language, such as Agda, Coq, Lean or Idris. In the author’s view, mechanized
formalization is the most effective way to build intuition about working in type theories.

• We often use categories-with-families [CCD19,Hof97,Dyb95] throughout the thesis.

• We use a modest amount of category theory, for which [Awo10] should be a sufficient
reference.

• For Chapter 6, the Homotopy Type Theory book [Uni13] provides context and motivation.

This thesis is mostly written in a linear fashion, as later chapters often revisit or generalize
earlier concepts. There are some breaks from linearity though, so we summarize dependencies
between chapters as follows:

• Chapter 3 depends on Chapter 2.

• All chapters after Chapter 3 depend on it.

• Chapter 5 depends on Chapter 4 as it revisits most constructions from there.

• Chapter 6 only depends on Chapter 3.

1.3 Formalization

Chapter 2 is fully formalized in Agda, and the semantics of weak signatures in Chapter 6
is mostly formalized, with some omissions and shortcuts. The formalization can be found
in [Kov22b].

1.4 Notation and Conventions

Throughout this thesis, we always work in some sort of type theory, although the exact flavor
of the type theory will vary. We summarize here the notations and conventions that will stay
consistent. Our style of notation is a mostly a mix of the homotopy type theory book [Uni13]
and the syntax of the proof assistant Agda.

Σ-types

We write a dependent pair type as (a : A)× B, where B may refer to a. Pairing is (t, u), and
projections are proj1 and proj2. Iterated Σ-types can written as (a : A)×(b : B)×C, for example.
We often silently re-associate left-nested Σ-types to the right, e.g. write (a : A) × (b : B) × C
instead of (ab : (a : A)×B)× C.

Field projection notation: we reuse binder names in Σ-types as field projections. For
example, if we have t : (foo : A) × B, then foot projects the first component from t. To
make this a bit more convenient, we also allow to name the last components, for example if
t : (foo : A)× (bar : B), then we have foot : A, and bart : B[foo 7→ foot]. This notation is useful
when we handle components of more complicated algebraic structures.
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Unit type

Whenever the unit type is available, we name it ⊤, and its inhabitant tt.

Π-types

Dependent function types are written as (a : A) → B, where B may depend on the a variable.
It is possible to group multiple binders with the same type, as in (x y : A) → B. For non-
dependent function types, we write plainly A → B. Functions are defined as λx. t. We may
group multiple binders, as in λx y z. t, and optionally add type annotation to binders, as in
λ (x : A). t.

We also use Agda-like implicit arguments: a function type {a : A} → B signals that we
usually omit the argument in function applications. For example, if id : {A : Set} → A → A, we
write id true : Bool. We can still make these arguments explicit, by using bracketed application,
as in id {Bool} true. Similarly, we may use bracketed λ, as in λ {A : Set} (x : A). x, to bind
implicit arguments.

Sometimes we also write pattern matching abstraction, as in λ (x, y). t for a function with
a Σ domain.

We may use implicit quantification as well: argument binders and types may be entirely
omitted when it is clear where they are quantified. This resembles the implicit generalization
in the Haskell or Idris programming languages. For example, the A and B types are implicitly
quantified below:

map : (A → B) → ListA → ListB

map :≡ ...

Identity types

We use – ≡ – and – = – to denote identity types. We always use – ≡ – as a “strict” equality
which satisfies uniqueness of identity proofs. Reflexivity of identity is always written as refl.
We use – = – as intensional identity in Chapter 2. In later chapters, – = – denotes the identity
type in the inner layer of a two-level type theory, and –≡ – denotes the outer identity type.

Definitions

We give definitions using :≡, for example as in

id : {A : Set} → A → A

id a :≡ a

Note that we write the function argument on the left of :≡, instead of writing a λ on the right.
We may switch between the two styles. The type signature can be omitted in a definition. We
may also use pattern matching, like in foo (x, y) :≡ ....



CHAPTER 2

Simple Signatures

In this chapter, we take a look at a very simple notion of algebraic signature. The motivation
for doing so is to present the basic ideas of this thesis in the easiest possible setting, with
explicit definitions. The later chapters are greatly generalized and expanded compared to the
current one, and are not feasible (and probably not that useful) to present in full formal detail.
We also include a complete Agda formalization of the contents of this chapter, in around 250
lines.

The mantra throughout this dissertation is the following: algebraic theories are specified
by typing contexts in certain theories of signatures. For each class of algebraic theories, there
is a corresponding theory of signatures, which is viewed as a proper type theory and comes
equipped with a model theory. Semantics of signatures is given by interpreting them in certain
models of the theory of signatures. Semantics should at least provide a notion of induction
principle for each signature; in this chapter we provide a bit more than that, and we will do
substantially more in Chapters 4 and 5.

Metatheory

We work in an intensional type theory which supports Π, Σ, ⊤, intensional identity – = –,
inductive families, and two universes Set and Set1 closed under the mentioned type formers,
with Set : Set1. Since the contents of this chapter are formalized in Agda, and our notation is
reminiscent of Agda too, we can think of the metatheory as a subset of Agda.

2.1 Theory of Signatures

Generally, more expressive theories of signatures can describe larger classes of theories. As we
are aiming for minimalism right now, the current theory of signatures is as follows:

Definition 1. The theory of signatures, or ToS for short, is a simple type theory equipped
with the following features:

• An empty base type ι.

• A first-order function type ι → –; this is a function whose domain is fixed to be ι.
Moreover, first-order functions only have neutral terms: there is application, but no λ-
abstraction.

5



6 2.1. THEORY OF SIGNATURES

We can specify the full syntax using the following Agda-like inductive definitions.

Ty : Set Var : Con → Ty → Set

ι : Ty vz : Var (Γ ▷ A)A

ι→ – : Ty → Ty vs : VarΓA → Var (Γ ▷ B)A

Con : Set Tm : Con → Ty → Set

• : Con var : VarΓA → TmΓA

– ▷ – : Con → Ty → Con app : TmΓ (ι → A) → TmΓ ι → TmΓA

Here, Con contexts are lists of types, and Var specifies well-typed De Bruijn indices, where vz
represents the zero index, and vs takes the successor of an index.

Notation 1. We use capital Greek letters starting from Γ to refer to contexts, A, B, C to refer
to types, and t, u, v to refer to terms. In examples, we may use a nameful notation instead
of De Bruijn indices. For example, we may write x : Tm (• ▷ (x : ι) ▷ (y : ι)) ι instead of
var (vs vz) : Tm (• ▷ ι ▷ ι) ι. Additionally, we may write t u instead of app t u for t and u terms.

Definition 2. Parallel substitutions map variables to terms.

Sub : Con → Con → Set

SubΓ∆ ≡ {A : Ty} → Var∆A → TmΓA

We use σ and δ to refer to substitutions. We also recursively define the action of substitution
on terms:

–[–] : Tm∆A → SubΓ∆ → TmΓA

(var x) [σ] :≡ σ x

(app t u)[σ] :≡ app (t[σ]) (u[σ])

The identity substitution id is defined simply as var. It is easy to see that t[id] = t for all t.
Substitution composition is as follows.

–◦– : Sub∆Ξ → SubΓ∆ → SubΓΞ

(σ ◦ δ)x :≡ (σ x)[δ]

Example 1. We may write signatures for natural numbers and binary trees respectively as
follows.

NatSig :≡ • ▷ (zero : ι) ▷ (suc : ι → ι)

TreeSig :≡ • ▷ (leaf : ι) ▷ (node : ι → ι → ι)

In short, the current ToS allows signatures which are

• Single-sorted : this means that we have a single type constructor, corresponding to ι.

• Closed : signatures cannot refer to any externally existing type. For example, we cannot
write a signature for lists of natural numbers in a direct fashion, since there is no way to
refer to the type of natural numbers.
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• Finitary : inductive types corresponding to signatures are always finitely branching trees.

Remark. We omit λ-expressions from the ToS for the sake of simplicity: this causes terms to
be always in normal form (neutral, to be precise), and thus we can skip talking about conversion
rules. Later, starting from Chapter 4 we include proper βη-rules in theories of signatures.

2.2 Semantics

For each signature, we need to know what it means for a type theory to support the corre-
sponding inductive type. For this, we need at least a notion of algebras, which can be viewed
as a bundle of all type and value constructors, and what it means for an algebra to support an
induction principle. Additionally, we may want to know what it means to support a recursion
principle, which can be viewed as a non-dependent variant of induction. In the following, we
define these notions by induction on ToS syntax.

Remark. We use “algebra” and “model” synonymously throughout this thesis.

2.2.1 Algebras

First, we calculate types of algebras. This is simply a standard interpretation into the Set
universe. We define the following operations by induction; the –A name is overloaded for Con,
Ty and Tm.

–A : Ty → Set → Set

ιA X :≡ X

(ι → A)A X :≡ X → AA X

–A : Con → Set → Set

ΓA X :≡ {A : Ty} → VarΓA → AAX

–A : TmΓA → {X : Set} → ΓAX → AAX

(var x)A γ :≡ γ x

(app t u)A γ :≡ tA γ (uA γ)

–A : SubΓ∆ → {X : Set} → ΓA X → ∆AX

σA γ x :≡ (σ x)A γ

Here, types and contexts depend on some X : Set, which serves as the interpretation of ι. We
define ΓA as a product: for each variable in the context, we get a semantic type. This trick, along
with the definition of Sub, makes formalization a bit more compact. Terms and substitutions
are interpreted as natural maps. Substitutions are interpreted by pointwise interpreting the
contained terms.

Notation 2. We may write values of ΓA using notation for Σ-types. For example, we may write
(zero : X)× (suc : X → X) for the result of computing NatSigA X.
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Definition 3. We define algebras as follows.

Alg : Con → Set1

AlgΓ :≡ (X : Set)× ΓAX

Example 2. Alg NatSig is computed to (X : Set)× (zero : X)× (suc : X → X).

2.2.2 Morphisms

Now, we compute notions of morphisms of algebras. In this case, morphisms are functions
between underlying sets which preserve all specified structure. The interpretation for calculating
morphisms is a logical relation interpretation [HRR14] over the –A interpretation. The key part
is the interpretation of types:

–M : (A : Ty){X0X1 : Set}(XM : X0 → X1) → AA X0 → AAX1 → Set

ιM XM α0 α1 :≡ XM α0 = α1

(ι → A)M XM α0 α1 :≡ (x : X0) → AM XM (α0 x) (α1 (X
M x))

We again assume an interpretation for the base type ι, as X0, X1 and XM : X0 → X1. XM

is function between underlying sets of algebras, and AM computes what it means that XM

preserves an operation with type A. At the base type, preservation is simply equality. At the
first-order function type, preservation is a quantified statement over X0. We define morphisms
for Con pointwise:

–M : (Γ : Con){X0X1 : Set} → (X0 → X1) → ΓA X0 → ΓA X1 → Set

ΓM XM γ0 γ1 :≡ {A : Ty}(x : VarΓA) → AM XM (γ0 x) (γ1 x)

For terms and substitutions, we get preservation statements, which are sometimes called fun-
damental lemmas in discussions of logical relations [HRR14].

–M : (t : TmΓA) → ΓM XM γ0 γ1 → AM XM (tA γ0) (t
A γ1)

(var x)M γM :≡ γM x

(app t u)MγM :≡ tM γM (uA γ0)

–M : (σ : SubΓ∆) → ΓM XM γ0 γ1 → ∆M XM (σA γ0) (σ
A γ1)

σM γM x :≡ (σ x)M γM

The definition of (app t u)M is well-typed by the induction hypothesis uM γM : XM (uA γ0) =
uA γ1.

Definition 4. To get notions of algebra morphisms, we again pack up ΓM with the inter-
pretation of ι.

Mor : {Γ : Con} → AlgΓ → AlgΓ → Set

Mor {Γ} (X0, γ0) (X1, γ1) :≡ (XM : X0 → X1)× ΓM XM γ0 γ1
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Example 3. We have the following computation:

Mor {NatSig} (X0, zero0 , suc0 ) (X1, zero1 , suc1 ) :≡
(XM : X0 → X1)

× (XM zero0 = zero1 )

× ((x : X0) → XM (suc0 x) = suc1 (X
M x))

Definition 5. We state initiality as a predicate on algebras:

Initial : {Γ : Con} → AlgΓ → Set

Initial {Γ} γ :≡ (γ′ : AlgΓ) → isContr (Mor γ γ′)

Here isContr refers to unique existence [Uni13, Section 3.11]. If we drop isContr from the
definition, we get the notion of weak initiality, which corresponds to the recursion principle for
Γ. Although we call this predicate Initial, in this chapter we do not yet show that algebras form
a category. We will show this in a more general setting in Chapter 4.

Morphisms vs. logical relations. The –M interpretation can be viewed as a special case of
logical relations over the –A model: every morphism is a functional logical relation, where the
chosen relation between the underlying sets happens to be a function. Consider now a more
general relational interpretation for types:

–R : (A : Ty){X0X1 : Set}(XR : X0 → X1 → Set) → AA X0 → AA X1 → Set

ιR XR α0 α1 :≡ XR α0 α1

(ι → A)R XR α0 α1 :≡ (x0 : X0)(x1 : X1) → XR x0 x1 → AR XR (α0 x0) (α1 x1)

Here, functions are related if they map related inputs to related outputs. If we know that
XM α0 α1 ≡ (f α0 = α1) for some function f , we get

(x0 : X0)(x1 : X1) → f x0 = x1 → AR XR (α0 x0) (α1 x1)

Now, we can simply substitute along the input equality proof in the above type, to get the
previous definition for (ι → A)M :

(x0 : X0) → AR XR (α0 x0) (α1 (f x0))

This substitution along the equation is called “singleton contraction” in the jargon of homotopy
type theory [Uni13]. The ability to perform contraction here is at the heart of the strict positivity
restriction for inductive signatures. Strict positivity in our setting corresponds to only having
first-order function types in signatures. If we allowed function domains to be arbitrary types, in
the definition of (A → B)M we would only have a black-box AM XM : AAX0 → AAX1 → Set
relation, which is not known to be given as an equality.

In Chapter 4 we expand on this. As a preliminary summary: although higher-order functions
have relational interpretation, such relations do not generally compose. What we eventually
aim to have is a category of algebras and algebra morphisms, where morphisms do compose.
We need a directed model of the theory of signatures, where every signature becomes a category
of algebras. The way to achieve this is to prohibit higher-order functions, thereby avoiding the
polarity issues that prevent a directed interpretation for general function types.
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2.2.3 Displayed Algebras

At this point we do not yet have specification for induction principles. We use the term
displayed algebra to refer to “dependent” algebras, where every displayed algebra component
lies over corresponding components in the base algebra. For the purpose of specifying induction,
displayed algebras can be viewed as bundles of induction motives and methods.

Displayed algebras over some γ : AlgΓ are equivalent to slices over γ in the category of
Γ-algebras; we will show this in Chapter 4. A slice f : ΓM γ′ γ maps elements of γ′’s underlying
set to elements in the base algebra. Why do we need displayed algebras, then? The main reason
is that if we are to eventually implement inductive types in a programming language or proof
assistant, we need to compute induction principles exactly, not merely up to isomorphisms.

For more illustration of using displayed algebras in a type-theoretic setting, see [AL19]. We
adapt the term “displayed algebra” from ibid. as a generalization of displayed categories (and
functors, natural transformations) to other algebraic structures.

The displayed algebra interpretation is a logical predicate interpretation, defined as follows.

–D : (A : Ty){X} → (X → Set) → AAX → Set

ιD XD α :≡ XD α

(ι → A)D XD α :≡ (x : X)(xD : XD x) → AD XD (αx)

–D : (Γ : Con){X} → (X → Set) → ΓAX → Set

ΓD XD γ :≡ {A : Ty}(x : VarΓA) → AD XD (γ x)

–D : (t : TmΓA) → ΓD XD γ → AD XD (tA γ)

(var x)D γD :≡ γD x

(app t u)D γD :≡ tD γD (uA γ) (uD γD)

–D : (σ : SubΓ∆) → ΓD XD γ → ∆D XD (σA γ)

σD γD x :≡ (σ x)D γD

Analogously to before, everything depends on a predicate interpretation XD : X → Set for
ι. For types, a predicate holds for a function if the function preserves predicates. The inter-
pretation of terms is again a fundamental lemma, and we again have pointwise definitions for
contexts and substitutions.

Definition 6 (displayed algebras).

DispAlg : {Γ : Con} → AlgΓ → Set1

DispAlg {Γ} (X, γ) :≡ (XD : X → Set)× ΓD XD γ

Example 4. We have the following computation.

DispAlg {NatSig} (X, zero, suc) ≡
(XD : X → Set)

× (zeroD : XD zero)

× (sucD : (n : X) → XD n → XD (suc n))
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2.2.4 Sections

Sections of displayed algebras are “dependent” analogues of algebra morphisms, where the
codomain is displayed over the domain.

–S : (A : Ty){X XD}(XS : (x : X) → XD x) → (α : AAX) → AD XD α → Set

ιS XS α αD :≡ XS α = αD

(ι → A)S XS α αD :≡ (x : X) → AS XS (αx) (αD (XS x))

ConS : (Γ : Con){X XD}(XS : (x : X) → XD x) → (γ : ΓAX) → ΓD XD γ → Set

ΓS XS γ0 γ1 :≡ {A : Ty}(x : VarΓA) → AS XS (γ0 x) (γ1 x)

–S : (t : TmΓA) → ΓS XS γ γD → AS XS (tA γ) (tD γD)

(var x)S γS :≡ γS x

(app t u)S γS :≡ tS γS (uA γ)

–S : (σ : SubΓ∆) → ΓS XS γ γD → ∆S XS (σA γ) (σA γD)

σS γS x = (σ x)S γS

Definition 7 (Displayed algebra sections (“sections” in short)).

Section : {Γ : Con} → (γ : AlgΓ) → DispAlg γ → Set

Section (X, γ) (XD γD) :≡ (XS : (x : X) → XD x)× ΓS XS γ γD

Example 5. We have the following computation.

Section {NatSig} (X, zero, suc) (XD, zeroD , sucD) ≡
(XS : (x : X) → XD x)

× (zeroS : XS zero = zeroD)

× (sucS : (n : X) → XS (suc n) = sucD n (XS n))

Definition 8 (Induction). We define a predicate which holds if an algebra supports induction.

Inductive : {Γ : Con} → AlgΓ → Set1

Inductive {Γ} γ :≡ (γD : DispAlg γ) → Section γ γD

We can observe that Inductive {NatSig} (X, zero, suc) computes to the usual induction prin-
ciple for natural numbers, but with β-rules given as propositional equalities. The input DispAlg
is a bundle of the induction motive and the methods, and the output Section contains the XS

eliminator function together with its β-rules.



12 2.3. TERM ALGEBRAS

2.3 Term Algebras

In this section we show that if a type theory supports the inductive types comprising the theory
of signatures, it also supports every inductive type which is described by the signatures.

Note that we specified Tm and Sub, but did not need either of them when specifying
signatures, or when computing induction principles. That signatures do not depend on terms
is a property specific to simple signatures; this will not be the case in Chapter 4 when we
move to more general signatures. However, terms and substitutions are already required in the
construction of term algebras.

The idea is that terms in contexts comprise initial algebras. For example, TmNatSig ι is
the set of natural numbers (up to isomorphism). Informally, this is because the only way to
construct terms is by applying the suc variable (given by var vz) finitely many times to the zero
variable (given by var (vs vz)).

Definition 9 (Term algebras). Fix an Ω : Con. We abbreviate TmΩ ι as T; this will serve
as the carrier set of the term algebra. We additionally define the following.

–T : (A : Ty) → TmΩA → AA T

ιT t :≡ t

(ι → A)T t :≡ λu.AT (app t u)

–T : (Γ : Con) → SubΩΓ → ΓA T

ΓT ν {A}x :≡ AT (ν x)

–T : (t : TmΓA)(ν : SubΩΓ) → AT (t[ν]) = tA (ΓT ν)

(var x)T ν holds by refl

(app t u)T ν holds by tT ν and uT ν

–T : (σ : SubΓ∆)(ν : SubΩΓ){A}(x : Var∆A)

→ ∆T (σ ◦ ν)x = σA (ΓT ν)x

σT ν x :≡ (σ x)T ν

Now we can define the term algebra for Ω itself:

TmAlgΩ : AlgΩ

TmAlgΩ :≡ ΩT Ω id

In the interpretation for contexts, it is important that Ω is fixed, and we do induction on all
Γ contexts such that there is a SubΩΓ. It would not work to try to compute term algebras by
direct induction on contexts because we need to refer to the same T set in the interpretation
of every type in a signature.

The interpretation of types embeds terms as A-algebras. At the base type ι, this embedding
is simply the identity function, since ιA T ≡ T ≡ TmΩ ι. At function types we recursively
proceed under a semantic λ. The interpretation of contexts is pointwise.
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The interpretations of terms and substitutions are coherence properties, which relate the
term algebra construction to term evaluation in the –A model. For terms, if we pick ν ≡ id, we
get AT t = tA TmAlgΩ. The left side embeds t in the term model via –T , while the right hand
side evaluates t in the term model.

One way to view the term algebra construction, is that we are working in a slice model
over the fixed Ω, and every ν : SubΩΓ can be viewed as an internal Γ-algebra in this model.
The term algebra construction demonstrates that every such internal algebra yields an external
element of ΓA.

2.3.1 Recursor Construction

We show that TmAlgΩ supports a recursion principle, i.e. it is weakly initial.

Definition 10 (Recursor construction). We assume (X, ω) : AlgΩ; recall that X : Set and
ω : ΩAX. We define R : T → X as R t :≡ tA ω. We additionally define the following.

–R : (A : Ty)(t : TmΩA) → AM R (AT t) (tA ω)

ιR t :≡ (refl : tA ω = tA ω)

(ι → A)R t :≡ λu.AR (app t u)

–R : (Γ : Con)(ν : SubΩΓ) → ΓM R (ΓT ν) (νA ω)

ΓR ν x :≡ AR (ν x)

We define the recursor for Ω as

RecΩ : (alg : AlgΩ) → Mor TmAlgΩ alg

RecΩ (X, ω) :≡ (R, ΩR Ω id)

In short, the way we get recursion is by evaluating terms in arbitrary (X, ω) algebras using
–A. The –R operation for types and contexts confirms that R preserves structure appropriately,
so that R indeed yields algebra morphisms.

We skip interpreting terms and substitutions by –R. It is necessary to do so with more
general signatures, but not in the current chapter.

2.3.2 Eliminator Construction

We take the idea of the previous section a bit further. We have seen that recursion for term
algebras is given by evaluation in the “standard” Set model. Now, we show that induction for
term algebras is obtained from the –D interpretation into the logical predicate model over the
Set model.

Definition 11 (Eliminator construction). We assume (XD, ωD) : DispAlg TmAlgΩ. Recall
that XD : T → Set and ωD : ΩD XD (ΩT Ω id). Like before, we first interpret the underlying
set:

E : (t : T) → XD t

E t :≡ tD ωD
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However, this definition is not immediately well-typed, since tD ωD has type XD (tA (ΩT Ω id)),
so we have to show that tA (ΩT Ω id) = t. This equation says that nothing happens if we
evaluate a term with type ι in the term model. We get it from the –T interpretation of terms:
tT id : t[id] = tA (ΩT Ω id), and we also know that t[id] = t. We interpret types and contexts as
well:

–E : (A : Ty)(t : TmΩA) → AS E (tA (ΩT Ω id)) (tD ωD)

ιE t : (tA (ΩT Ω id))D ωD = tD ωD

(ι → A)E t :≡ λu.AE (app t u)

–E : (Γ : Con)(ν : SubΩΓ) → ΓS E (νA (ΩT Ω id)) (νD ωD)

ΓE ν x :≡ AE (ν x)

In ιE we use the same equation as in the definition of E. In (ι → A)E the definition is well-typed
because of the same equation, but instantiated for the abstracted u term this time. All of this
amounts to some additional path induction and transport fiddling in the (intensional) Agda
formalization. We get induction for Ω as below.

IndΩ : (alg : DispAlg TmAlgΩ) → SectionTmAlgΩ alg

IndΩ (XD, ωD) :≡ (E, ΩE Ω id)

2.4 Comparison to Endofunctors as Signatures

A well-known alternative definition of algebraic signatures is to view certain cocontinuous endo-
functors as such. For example, single-sorted signatures can be defined to be endofunctors which
preserve colimits of some ordinal-indexed chains. For instance, if we have a κ-cocontinuous
F : C → C, then algebras are given as (X : |C|)× (C(F X, X)), called F-algebras, morphisms
as commuting squares, and Adámek’s theorem [AK79] establishes the existence of initial alge-
bras.

An advantage of this approach is that we can describe different classes of signatures by
choosing different C categories:

• If C is Set, we get simple inductive theories.

• If C is SetI for some set I, we get indexed inductive signatures.

• If C is Set/I, we get inductive-recursive signatures.

Another advantage is that signatures are fairly semantic in nature: they make sense even if
we have no syntactic presentation at hand. That said, often we do need syntactic signatures,
for use in proof assistants, or just to have a convenient notation for a class of cocontinuous
functors.

An elegant way of carving out a large class of such functors is to consider polynomials as
signatures. For example, when working in Set, a signature is an element of (S : Set) × (P :
S → Set), and (S, P ) is interpreted as a functor as X 7→ (s : S) × (P s → X). The initial
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algebra is the W-type specified by S shapes and P positions. This yields infinitary inductive
types as well.

However, it is not known how to get inductive-inductive signatures by picking the right C
category and a functor. In an inductive-inductive signature, there may be multiple sorts, which
can be indexed over previously declared sorts. For example, in the signature for categories we
have Obj : Set and Mor : Obj → Obj → Set, indexed twice over Obj. Some extensions are
required to the idea of F -algebras:

• For inductive-inductive definitions with two sorts, Forsberg gives a specification with
two functors, and a considerably more complex notion of algebras, involving dialgebras
[NF13].1

• For an arbitrary number of sorts, Altenkirch et al. [ACD+18] use a “list” of functors,
specified mutually with categories of algebras: each functor has as domain the semantic
category of all previous sorts.

The functors-as-signatures approach gets significantly less convenient as we consider more
general specifications. The approach of this thesis is to skip the middle ground between syn-
tactic signatures and semantic categories of algebras: we treat syntactic signatures as a key
component, and give direct semantic interpretation for them. Although we lose the semantic
nature of signatures, our approach scales extremely well, all the way up to infinitary quotient-
inductive-inductive types in Chapter 5, and to some extent to higher inductive-inductive types
as well in Chapter 6.

If we look back at –A : Con → Set → Set, we may note that ΓA yields a functor, in fact
the same functor (up to isomorphism) that we would get from an endofunctor presentation.
However, this is a coincidence in the single-sorted case. We can view (X : |C|)× (C(F X, X))
as specifying the category of algebras as the total category of a displayed category (by viewing
the Σ-type here as taking total categories; a Σ in Cat). In our approach, we aim to get the
displayed categories directly, without talking about functors.

1However, the dialgebra specification only covers restricted signatures, where B : A → Set constructor types
may refer to A : Set constructors, but no other dependency is allowed. There is a more general and yet more
complicated notion of signature in [NF13], which is not anymore represented with functors.



CHAPTER 3

Semantics in Two-Level Type Theory

In this chapter we describe how two-level type theory is used as a metatheoretic setting in the
rest of this thesis. First, we provide motivation and overview. Second, we describe models
of type theories in general, and models of two-level type theories as extensions. Third, we
describe presheaf models of two-level type theories. Finally, we generalize the semantics and
the term algebra construction from Chapter 2 in two-level type theory, as a way to illustrate
the applications.

3.1 Motivation

We note two shortcomings of the semantics presented in the previous chapter.

First, the semantics that we provided was not as general as it could be. We used the internal
Set universe to specify algebras, but algebras make sense in many different categories. A crude
way to generalize semantics is to simply say that our formalization, which was carried out in
the syntax (i.e. initial model) of some intensional type theory, can be interpreted in any model
of the type theory. But this is wasteful: for simple inductive signatures, it is enough to assume
a category with finite products as semantic setting. We do not need all the extra baggage that
comes with a model of a type theory.

Second, we were not able to reason about definitional equalities, only propositional ones.
We have a formalization of signatures and semantics in intensional Agda, where the two notions
differ1, but only propositional equality is subject to internal reasoning. For instance, we would
like to show that term algebras support recursion with strict β-rules, and for this we need to
reason about strict equality.

Notation 3. We use • for the terminal object in a C category, with ϵ : C(A, •) for the unique
morphism. For products, we use –⊗– with (–,–) : C(A, B) → C(A, C) → C(A, B ⊗C) and p
and q for first and second projections respectively.

Example 6. Assuming a category C with finite products, we specify natural number alge-
bras and binary tree algebras as follows. Below, AlgNatSig and AlgTreeSig are both sets in some

1As opposed to in extensional type theory, where they are the same.

16
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metatheory, and the × in the definitions refer to the metatheoretic Σ.

AlgNatSig :≡ (X : |C|)× C(•, X)× C(X, X)

AlgTreeSig :≡ (X : |C|)× C(•, X)× C(X ⊗X, X)

How should we adjust Alg from the previous chapter to compute algebras in C, and Mor to
compute their morphisms? While it is possible to do this in a direct fashion, working directly
with objects and morphisms of C is rather unwieldy. C is missing many convenience features
of type theories.

• There are no variables or binders. We are forced to work in a point-free style or chase
diagrams; both become difficult to handle above a certain level of complexity.

• There are no functions, universes or inductive types.

• Substitution (with weakening as a special case) has to be handled explicitly and manually.
Substitutions are certain morphisms, while “terms” are also morphisms, and we have to
use composition to substitute terms. In contrast, if we are working internally in a type
theory, terms and substitutions are distinct, and we only have to explicitly deal with
terms, and substitutions are automated and implicit.

The above overlaps with motivations for working in internal languages [nc21] of structured
categories: they aid calculation and compact formalization by hiding bureaucratic structural
details.

A finite product category C does not have much of an internal language, it is too bare-bones.
But we can work instead in the internal language of Ĉ, the category of presheaves over C. This
allows faithful reasoning about C, while also including all convenience features of extensional
type theory.

Two-level type theories [ACKS19], or 2LTT in short, are type theories such that they have
“standard” interpretations in presheaf categories. A 2LTT has an inner layer, where types and
terms arise by embedding C in Ĉ, and an outer layer, where constructions are inherited from
Ĉ. The exact details of the syntax may vary depending on what structures C supports, and
which type formers we assume in the outer layer. Although it is possible to add assumptions to
a 2LTT which preclude standard presheaf semantics [ACKS19, Section 2.4.], we stick to basic
2LTT in this thesis. By using 2LTT, we are able to use a type-theoretic syntax which differs
only modestly from the style of definitions that we have seen so far.

From a programming perspective, basic 2LTT provides a convenient syntax for writing
metaprograms. This can be viewed as two-stage compilation: if we have a 2LTT program with
an inner type, we can run it, and it returns another program, which lives purely in the inner
theory.

3.2 Models of Type Theories

Before explaining 2LTT-specific features, we review models of type theories in general. Variants
of 2LTT will be obtained by adding extra features on the top of more conventional type theories.

It is also worth to take a more general look at models at this point, because the notions
presented in this subsection (categories with families, type formers) will be reused several times
in this thesis, when specifying theories of signatures.
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3.2.1 The Algebraic View

We take an algebraic view of models and syntaxes of type theories throughout this thesis.
Models of type theories are algebraic structures: they are categories with certain extra structure.
The syntax of a type theory is understood to be its initial model. In initial models, the
underlying category is the category of typing contexts and parallel substitutions, while the
extra structure corresponds to type and term formers, and equations quotient the syntax by
definitional equality.

Type theories can be described with quotient inductive-inductive (QII) signatures, and their
initial models are quotient inductive-inductive types (QIITs). Hence, 2LTT is also a QII theory.
We will first talk about QIITs in Chapter 4. Until then, we shall make do with an informal
understanding of categorical semantics for type theories, without using anything in particular
from the metatheory of QIITs. There is some circularity here, that we talk about QIITs in this
thesis, but we employ QIITs when talking about them. However, this is only an annoyance
in exposition and not a fundamental issue: Sections 4.5 and 5.7 describe how to eliminate
circularity by a form of bootstrapping.

The algebraic view lets us dispense with all kinds of “raw” syntactic objects. We only
ever talk about well-typed and well-formed objects, moreover, every construction must respect
definitional equalities. For terms in the algebraic syntax, definitional equality coincides with
metatheoretic equality. This mirrors equality of morphisms in 1-category theory, where we
usually reuse metatheoretic equality in the same way.

In the following we specify notions of models for type theories. We split this in two parts:
categories with families and type formers.

3.2.2 Categories With Families

Definition 12. A category with families (cwf) [Dyb95] is a way to specify the basic struc-
tural rules for contexts, substitutions, types and terms. It yields a dependently typed explicit
substitution calculus. A cwf consists of the following.

• A category with a terminal object. We denote the set of objects as Con : Set and
use capital Greek letters starting from Γ to refer to objects. The set of morphisms is
Sub : Con → Con → Set, and we use σ, δ and so on to refer to morphisms. We write
id for the identity morphism and – ◦ – for composition. The terminal object is • with
unique morphism ϵ : SubΓ •. In initial models (that is, syntaxes) of type theories, objects
correspond to typing contexts, morphisms to parallel substitutions and the terminal object
to the empty context; this informs the naming scheme.

• A family structure, containing Ty : Con → Set and Tm : (Γ : Con) → TyΓ → Set. We use
A, B, C to refer to types and t, u, v to refer to terms. Ty is a presheaf over the category
of contexts and Tm is a displayed presheaf over Ty. This means that types and terms can
be substituted:

–[–] : Ty∆ → SubΓ∆ → TyΓ

–[–] : Tm∆A → (σ : SubΓ∆) → TmΓ (A[σ])

Substitution is functorial: we have A[id] ≡ A and A[σ ◦ δ] ≡ A[σ][δ], and likewise for
terms.



CHAPTER 3. SEMANTICS IN TWO-LEVEL TYPE THEORY 19

A family structure is additionally equipped with context comprehension which consists of
a context extension operation – ▷ – : (Γ : Con) → TyΓ → Con together with a natural
isomorphism SubΓ (∆ ▷ A) ≃ ((σ : SubΓ∆)× TmΓ (A[σ])).

The following notions are derivable from the comprehension structure:

• By going right-to-left along the isomorphism, we recover substitution extension – , – : (σ :
SubΓ∆) → TmΓ (A[σ]) → SubΓ (∆▷A). This means that starting from ϵ or the identity
substitution id, we can iterate – , – to build substitutions as lists of terms.

• By going left-to-right, and starting from id : Sub (Γ ▷A) (Γ ▷A), we recover the weakening
substitution p : Sub (Γ ▷ A) Γ and the zero variable q : Tm (Γ ▷ A) (A[p]).

• By weakening q, we recover a notion of variables as De Bruijn indices. In general, the
n-th De Bruijn index is defined as q[pn], where pn denotes n-fold composition.

Comprehension can be characterized either by taking – , –, p and q as primitive, or the
natural isomorphism. The two are equivalent, and we may switch between them, depending on
which is more convenient.

There are other ways for presenting the basic categorical structure of models, which are
nonetheless equivalent to cwfs, including natural models [Awo18] and categories with attributes
[Car78]. We use the cwf presentation for its immediately algebraic character and closeness to
conventional explicit substitution syntax.

Notation 4. As De Bruijn indices are hard to read, we will mostly use nameful notation for
binders. For example, assuming Nat : {Γ : Con} → TyΓ and Id : {Γ : Con}(A : TyΓ) →
TmΓA → TmΓA → TyΓ, we may write • ▷ n : Nat ▷ p : Id Natnn for a typing context,
instead of using numbered variables or cwf combinators as in • ▷ Nat ▷ Id Nat q q.

Notation 5. In the following, we will denote family structures by (Ty,Tm) pairs and overload
context extension – ▷ – for different families.

Definition 13. The following derivable operations are commonly used.

• Single substitution can be derived from parallel substitution as follows. Assume t :
Tm (Γ ▷ A)B, and u : TmΓA. t is a term which may depend on the last variable in
the context, which has A type. We can substitute that variable with the u term as
t[id, u] : TmΓ (A[id, u]). Note that term substitution causes the type to be substituted as
well. (id, u) : SubΓ (Γ ▷ A) is well-typed because u : TmΓA hence also u : TmΓ (A[id]).

• We can lift substitutions over binders as follows. Assuming σ : SubΓ∆ and A : Ty∆,
we construct a lifting of σ which maps an additional A-variable to itself: (σ ◦ p, q) :
Sub (Γ ▷ A[σ]) (∆ ▷ A). Let us see why this is well-typed. We have p : Sub (Γ ▷ A[σ]) Γ
and σ : SubΓ∆, so σ ◦ p : Sub (Γ ▷ A[σ])∆. Also, q : Tm (Γ ▷ A[σ]) (A[σ][p]), hence
q : Tm (Γ ▷ A[σ]) (A[σ ◦ p]), thus (σ ◦ p, q) typechecks.

Notation 6. As a nameful notation for substitutions, we may write t[x 7→ u], for a single
substitution, or t[x 7→ u1, y 7→ u2] and so on.
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In nameful notation we leave all weakening implicit, including substitution lifting. Formally,
if we have t : TmΓA, we can only mention t in Γ. If we need to mention it in Γ ▷ B, we need
to use t[p] instead. In the nameful notation, t : Tm (Γ ▷ x : B)A may be used.2

3.2.3 Type formers

A family structure in a cwf may be closed under certain type formers, such as functions, Σ-
types, universes or inductive types. We give some examples here for their specification. First,
we look at common negative type formers; these are the type formers which can be specified
using isomorphisms. Then, we consider positive type formers, and finally universes.

Negative types

Definition 14. A (Ty, Tm) family supports Π-types if it supports the following.

Π : (A : TyΓ) → Ty (Γ ▷ A) → TyΓ

Π[] : (ΠAB)[σ] ≡ Π(A[σ]) (B[σ ◦ p, q])
app : TmΓ (ΠAB) → Tm (Γ ▷ A)B

lam : Tm (Γ ▷ A)B → TmΓ (ΠAB)

Πβ : app (lam t) ≡ t

Πη : lam (app t) ≡ t

lam[] : (lam t)[σ] ≡ lam (t[σ ◦ p, q])

Here, Π is the type formation rule. Π[] is the type substitution rule, expressing that substituting
Π proceeds structurally on constituent types. Note B[σ◦p, q], where we lift σ over the additional
binder.

The rest of the rules specify a natural isomorphism TmΓ (ΠAB) ≃ Tm (Γ ▷A)B. We only
need a substitution rule (i.e. a naturality rule) for one direction of the isomorphism, since the
naturality of the other map is derivable.

This way of specifying Π-types is very convenient if we have explicit substitutions. The usual
“pointful” specification is equivalent to this. For example, we have the following derivation of
pointful application:

app′ : TmΓ (ΠAB) → (u : TmΓA) → TmΓ (B[id, u])

app′ t u :≡ (app t)[id, u]

Remark on naturality. The above specification for Π can be written more compactly if we
assume that everything is natural with respect to substitution.

Π : (A : TyΓ) → Ty (Γ ▷ A) → TyΓ

(app, lam) : TmΓ (ΠAB) ≃ Tm (Γ ▷ A)B

This is a reasonable assumption; in the rest of the thesis we only ever define structures on cwfs
which are natural in this way.

2Moreover, when working in the internal syntax of a theory, we just write Agda-like type-theoretic notation,
without noting contexts and substitutions in any way.
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Notation 7. From now on, when specifying type formers in family structures, we assume that
everything is natural, and thus omit substitution equations.

There are ways to make this idea more precise, and take it a step further by working in
languages where only natural constructions are possible. The term higher-order abstract syntax
(HOAS) is sometimes used for this style. It lets us also omit contexts, so we would only need
to write

Π : (A : Ty) → (TmA → Ty) → Ty

(app, lam) : Tm (ΠAB) ≃ ((a : TmA) → Tm (B a))

Recently several promising works emerged in this area [Uem19, SA21,BKS21]. Although this
technology is likely to be the preferred future direction in the metatheory of type theories, this
thesis does not make use of it. The field is rather fresh, with several different approaches and
limited amount of pedagogical exposition, and the new techniques would also raise the level of
abstraction in this thesis, contributing to making it less accessible. It is also not obvious how
exactly HOAS-style could be employed to aid formalization here, and it would require significant
additional research. Often, a setup with multiple modalities (“multimodal” [GKNB20]) is
required [BKS21] because we work with presheaves over different cwfs. It seems that a synthetic
notion of dependent modes would be also required to formalize constructions in this thesis, since
we often work with displayed presheaves over displayed cwfs. This is however not yet developed
in the literature.

Definition 15. A family structure supports constant families if we have the following.

K : Con → {Γ : Con} → TyΓ

(appK, lamK) : TmΓ (K∆) ≃ SubΓ∆

Constant families express that every context can be viewed as a non-dependent type in any
context. Having constant families is equivalent to the democracy property for a cwf [CD14,
NF13]. Constant families are convenient when building models because they let us model non-
dependent types as semantic contexts, which are often simpler structures than semantic types.
From a programming perspective, constant families specify closed record types, where K∆ has
∆-many fields.

If we have equalities of sets for the specification, i.e. TmΓ (K∆) ≡ SubΓ∆, we have strict
constant families.

Definition 16. A family structure supports Σ-types if we have

Σ : (A : TyΓ) → Ty (Γ ▷ A) → TyΓ

(proj, (– , –)) : TmΓ (ΣAB) ≃ ((t : TmΓA)× TmΓ (B[id, t]))

We may write proj1 and proj2 for composing the metatheoretic first and second projections with
proj.

Definition 17. A family structure supports the unit type if we have ⊤ : TyΓ such that
TmΓ⊤ ≃ ⊤, where the ⊤ on the right is the metatheoretic unit type, and we overload ⊤ for
the internal unit type. From this, we get the internal tt : TmΓ⊤, which is definitionally unique.
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Definition 18. A family structure supports extensional identity types if there is Id :
TmΓA → TmΓA → TyΓ such that (reflect, refl) : TmΓ (Id t u) ≃ (t ≡ u).

It is also possible to give a positive definition for identity types, in which case we get
intensional identity. Extensional identity corresponds to a categorical equalizer of terms (a
limit), while the Martin-Löf-style intensional identity is a positive (inductive) type.

This choice between negative and positive specification generally exists for type formers
with a single term construction rule. For example, Σ can be defined as a positive type, with
an elimination rule that behaves like pattern matching. Positive Σ is equivalent to negative
Σ, although it only supports propositional η-rules. In contrast, positive identity is usually not
equivalent to negative identity.

refl : t ≡ u → TmΓ (Id t u) expresses reflexivity of identity: definitionally equal terms are
provably equal. reflect, which goes the other way around, is called equality reflection: provably
equal terms are identified in the metatheory.

Uniqueness of identity proofs (UIP) is often ascribed to the extensional identity type (see
e.g. [Hof95]). UIP means that TmΓ (Id t u) has at most a single inhabitant up to Id. However,
UIP is not something which is inherent in the negative specification, instead it is inherited from
the metatheory. If Tm forms a homotopy set in the metatheory, then internal equality proofs
inherit uniqueness through the defining isomorphism.

Positive types

We do not dwell much on positive types here, as elsewhere in this thesis we talk a lot about
specifying such types anyway. We provide here some background and a small example.

The motivation is to specify initial internal algebras in a cwf. However, specifying the
uniqueness of recursors using definitional equality is problematic, if we are to have decidable
and efficient conversion checking for a type theory. Consider the specification of Bool together
with its recursor.

Bool : TyΓ

true : TmΓBool

false : TmΓBool

BoolRec : (B : TyΓ) → TmΓB → TmΓB → TmΓBool → TmΓB

trueβ : BoolRecB t f true ≡ t

falseβ : BoolRecB t f false ≡ f

BoolRec together with the β-rules specifies an internal Bool-algebra morphism. A possible way
to specify definitional uniqueness is as follows. Assuming B : TyΓ, t : TmΓB, f : TmΓB
and m : Tm (Γ ▷ b : Bool)B, such that m[b 7→ true] ≡ t and m[b 7→ false] ≡ f , it follows that
BoolRecB t f b : Tm (Γ ▷ b : Bool)B is equal to m.

Unfortunately, deciding conversion with this rule entails deciding pointwise equality of arbi-
trary Bool functions, which can be done in exponential time in the number of Bool arguments.
More generally, Scherer presented a decision algorithm for conversion checking with strong finite
sums and products in simple type theory [Sch17], which also takes exponential time. If we move
to natural numbers with definitionally unique recursion, conversion checking becomes undecid-
able. To illustrate this, consider checking conversion between any closed term t : Nat → Nat
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and the identity function. To cover the η-rule, we would have to decide t zero ≡ zero and
(n : Tm •Nat) → t (sucn) ≡ suc (t n). Assuming canonicity, this is equivalent to deciding
(n : N) → t (sucn zero) ≡ (sucn zero), where sucn zero denotes a canonical numeral.

The standard solution is to have dependent elimination principles instead: this allows in-
ductive reasoning, canonicity and effectively decidable definitional equality at the same time.
For Bool, we would have

BoolInd : (B : Ty (Γ ▷ b : Bool)) → TmΓ (B[b 7→ true])

→ TmΓ (B[b 7→ false]) → (t : TmΓBool) → TmΓ (B[b 7→ t])

together with BoolIndB t f true ≡ t and BoolIndB t f false ≡ f .
Of course, if we assume extensional identity types, we have undecidable conversion anyway,

and definitionally unique recursion is equivalent to induction. But decidable conversion is
a pivotal part of type theory, which makes it possible to relegate a deluge of boilerplate to
computers, so decidable conversion should be kept in mind.

Universes

Universes are types which classify types. There are several different flavors of universes.

Definition 19. A Tarski-style universe consists of the following data:

U : TyΓ El : TmΓU → TyΓ

This is a weak classifier, since not all elements of TyΓ are necessarily represented as terms
of the universe. Like families, Tarski universes can be closed under type formers. For instance,
if U has Nat, we have the following:

Nat : TmΓU zero : TmΓ (El Nat) suc : TmΓ (El Nat) → TmΓ (El Nat)

NatElim : (P : Ty (Γ ▷ n : El Nat))

→ TmΓ (P [n 7→ zero])

→ Tm (Γ ▷ n : El Nat ▷ np : P [n 7→ n]) (P [n 7→ sucn])

→ (n : TmΓ (El Nat)) → TmΓ (P [n 7→ n])

If all type formers in U follow this scheme, U may be called a weakly Tarski universe. If we
assume that every type former in U is also duplicated in (Ty, Tm), moreover El preserves all
type formers, so that e.g. El Nat is definitionally equal to the natural number type in Ty, then
U is strongly Tarski.

It is often more convenient to have stronger classifiers as universes, so that all types in a
given family structure are represented.

Definition 20. Ignoring size issues for now, Coquand universes [Coq18] are specified as
follows:

U : TyΓ (El, c) : TmΓU ≃ TyΓ

c maps every type in Ty to a code in U. Now we can ignore El when specifying type formers,
as c can be always used to get a code in U for a type.
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Unfortunately, the exact specification above yields an inconsistent “type-in-type” system
because U itself has a code in U. The standard solution is to have multiple family structures
(Tyi, Tmi), indexed by universe levels, and have Ui : Tyi+1 Γ and Tmi+1 ΓUi ≃ Tyi Γ. For a
general specification of consistent universe hierarchies, see [Kov22a]. We omit universe indices
in the following, and implicitly assume “just enough” universes for particular purposes.

Definition 21. Russell universes are Coquand universes additionally satisfying TmΓU ≡
TyΓ as an equality of sets, and also El t ≡ t. This justifies omitting El and c from informal
notation, implicitly casting between TmΓU and TyΓ.

Russell-style universes are commonly supported in set-theoretic models. They are also often
inherited from meta-type-theories which themselves have Russell-universes. Major implemen-
tations of type theories (Coq, Lean, Agda, Idris) are all such.

3.3 Two-Level Type Theory

3.3.1 Models

We describe models of 2LTT in the following. This is not the only possible way to present
2LTT; our approach differs from [ACKS19] in some ways. We will summarize the differences
at the end of this section.

Definition 22. A model of a two-level type theory is a model of type theory such that

• It supports a Tarski-style universe Ty0 : TyΓ with decoding Tm0 : TmΓTy0 → TyΓ.

• Ty0 may be closed under arbitrary type formers, however, it is only possible to eliminate
from Ty0 type formers to types in Ty0.

Types in Ty0 are called inner types, while other types are outer. Alternatively, we may talk
about object-level and meta-level types.

For example, if we have inner functions, we have the following:

Π0 : (A : TmΓTy0) → Tm (Γ ▷ Tm0A) → TmΓTy0
(app0, lam0) : TmΓ (Tm0 (Π0AB)) ≃ Tm (Γ ▷ Tm0A) (Tm0B)

If we have inner Booleans, we have the following (with β-rules omitted):

Bool0 : TmΓTy0
true0 : TmΓ (Tm0 Bool0)

false0 : TmΓ (Tm0 Bool0)

BoolInd0 : (B : Tm (Γ ▷ b : Tm0 Bool0)Ty0)

→ TmΓ (Tm0 (B[b 7→ true0]))

→ TmΓ (Tm0 (B[b 7→ false0]))

→ (t : TmΓ (Tm0 Bool0)) → TmΓ (Tm0 (B[b 7→ t]))
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Intuitively, we can view outer types and terms as metatheoretical, while Ty0 represents the
set of types in the object theory, and Tm0 witnesses that any object type can be mapped to
a metatheoretical set of object terms. The restriction on elimination is crucial. If we have
a Boolean term in the object language, we can use the object-level elimination principle to
construct new object terms. But it makes no sense to eliminate into the metatheory. In fact,
an object-level Boolean term is not necessarily true or false, it can also be just a variable or
neutral term in some context, or it can be an arbitrary non-canonical value in a given model.

We review some properties of 2LTT. An important point is the action of Tm0 on type
formers. In general, Tm0 preserves the negative type formers but not others.

For example, we have the isomorphism Tm0 (Π0AB) ≃ Π1 (Tm0A) (Tm0B), where Π1

denotes outer functions. We move left-to-right by mapping t to lam1 (app1 t), and the other
way by mapping t to lam0 (app0 t). The preservation of Σ, ⊤, K and extensional identity is
analogous.

In contrast, we can map from outer positive types to inner ones, but not the other way
around. From b : TmΓBool1, we can use the outer Bool1 recursor to return in Tm0 Bool0. In
the other direction, only constant functions are definable since the Bool0 recursor only targets
types in Ty0.

It may be the case that there are universes in the inner layer. For example, disregarding size
issues (or just accepting an inconsistent inner theory), there may be an U0 in Ty0 such that we
have TmΓ (Tm0 U0) ≡ TmΓTy0. This amounts to having a Russell-style inner universe with
type-in-type. Assume that we have U1 as well, as a meta-level Russell universe. Then we can
map from Tm0 U0 to U1, by taking A to Tm0A, but we cannot map in the other direction.

3.3.2 Internal Syntax and Notation

In the rest of this thesis we will often work internally to a 2LTT, i.e. we use 2LTT as metatheory.
We adapt the metatheoretical notations used so far. We list used features and conventions
below.

• We keep previous notation for type formers. For instance, Π-types are written as (x :
A) → B or as A → B.

• We assume a Coquand-style universe in the outer layer, named Set. As before, we leave
the sizing levels implicit; if we were fully precise, we would write Seti for a hierarchy of
outer universes. Despite having a Coquand universe, we shall omit encoding and decoding
in the internal syntax, and instead work in Russell-style. In practical implementations,
elaborating Russell-style notation to Coquand-style is straightforward to do.

• If the same type formers are supported both in the inner and outer layers, we may
distinguish them by 0 and 1 subscripts, e.g. by having Bool0 and Bool1. We omit some
inferable subscripts, e.g. for Π and Σ-types. In these cases, we usually know from the
type parameters which type former is meant. For example, Tm0 Bool0 → Bool1 can only
refer to outer functions.

• We have the convention that – = – refers to the inner equality type, while – ≡ – refers
to the outer equality type. If the inner equality is extensional, the choice between – = –
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and – ≡ – is immaterial, but in Section 3.5 and Chapter 6 we do have intensional inner
equality.

• By having Set, we are able to have Ty0 : Set and Tm0 : Ty0 → Set. So we do not have
to deal with proper meta-level types, and have a more uniform notation. Notation and
specification for inner type formers changes accordingly. For example, for inner Π-types we
may write (x : A) → B if A : Ty0 and B depends on x : Tm0A. This also enables a higher-
order specification: if B : Tm0A → Ty0, then (x : A) → B x : Ty0, and the specifying
isomorphism for Π can be written as Tm0 ((x : A) → B x) ≃ ((x : Tm0A) → Tm0 (B x)).
Note that the definition of –≃ – requires a meta-level identity type.

Notation 8. An explicit notation for inner function abstraction would look like lam0 t for t :
(x : Tm0A) → Tm0 (B x). This results in “double” abstraction, e.g. in lam0 (λx. suc0 (suc0 x)) :
Tm0 (Nat0 → Nat0). Instead of this, we write λ0 x. t as a notation, thus we write
λ0 x. suc0 (suc0 x) for the above example. We may also group multiple λ0 binders together
the same way as with λ.

• Wemay omit inferable Tm0 applications. For instance, Bool1 → Bool0 can be “elaborated”
to Bool1 → Tm0 Bool0 without ambiguity, since the function codomain must be on the
same level as the domain, and the only thing we can do to make sense of this is to lift the
codomain by Tm0. Sometimes there is some ambiguity: (Bool0 → Bool0) → Bool1 can
be elaborated both to Tm0 (Bool0 → Bool0) → Bool1 and to (Tm0 Bool0 → Tm0 Bool0) →
Bool1. However, in this case the two output types are definitionally isomorphic because of
the Π-preservation by Tm0. Hence, the elaboration choice does not make much difference,
so we may still omit Tm0-s in situations like this.

Example 7. Working in the internal syntax of 2LTT, the specification of Bool0 looks like the
following (omitting β again):

Bool0 : Ty0
true0 : Bool0

false0 : Bool0

BoolInd0 : (B : Bool0 → Ty0) → B true0 → B false0 → (t : Bool0) → B t

If we elaborate the type of BoolInd0, we get the following:

BoolInd0 : (B : Tm0 Bool0 → Ty0) → Tm0 (B true0) → Tm0 (B false0)

→ (t : Tm0 Bool0) → Tm0 (B t)

Here, the type is forced to live in the outer level because of the dependency on Ty0. Since Ty0
is an outer type, Bool0 → Ty0 must be lifted, which in turn requires all other types to be lifted
as well.

3.3.3 Alternative Presentation for 2LTT

We digress a bit on a different way to present 2LTT. In the primary 2LTT reference [ACKS19],
inner and outer layers are specified as follows. We have two different family structures on the
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base cwf, (Ty0, Tm0) and (Ty1, Tm1), and a morphism between them. A family morphism is
natural transformation mapping types to types and terms to terms, which is an isomorphism
on terms. We might name the component maps as follows:

⇑ : Ty0 Γ → Ty1 Γ

↑ : Tm0 ΓA → Tm1 Γ (⇑A)
↓ : Tm1 Γ (⇑A) → Tm0 ΓA

An advantage of this presentation is that we may close (Ty0, Tm0) under type formers without
any encoding overhead, for example by having Bool0 : Ty0 Γ, true0 : Tm0 ΓBool0, etc., without
the Tarski-style decoding. On the other hand, we do not automatically get an outer universe
of inner types. We can recover that in two ways:

• We can assume an inner universe U0 : Ty0 Γ, which can be lifted to the outer theory as
⇑ U0. However, we may not want to make this assumption, in order to keep the inner
theory as simple as possible.

• We can assume an outer universe which classifies elements of Ty0 Γ. This amounts to
reproducing the Ty0 type from our 2LTT presentation, as an additional assumption. But
in this case, we might as well skip the two family structures and the ⇑ morphism.

In this thesis we make ubiquitous use of the outer universe of inner types, so we choose that to
be the primitive notion, instead of having two family structures.

Do we lose anything by this? For the purposes of this thesis, not really. However, if we
want to implement 2LTT as a system for two-stage compilation, the ⇑ syntax appears to be
closer to existing systems. Staging is about computing all outer redexes but no inner ones,
thereby outputting syntax which is purely in the inner theory. This could be implemented as
a stage-aware variant of normalization-by-evaluation [Abe13,AÖV18,WB18]. We can give an
intuitive staging interpretation for the operators in the ⇑ syntax:

• ⇑A is the type of A-expressions. This corresponds to a code in MetaOcaml [Kis14] and
TExp a in typed Template Haskell [XPL+22].

• ↑ is quoting, which creates an expression from any inner term. This is .⟨–⟩. in MetaOCaml
and [||– ||] in typed Template Haskell.

• ↓ is splicing, which inserts the result of a meta-level computation into an object-level
expression. This is ∼(–) in MetaOCaml and $$(–) in typed Template Haskell.

For example, in the ⇑ syntax, we might write a polymorphic identity function which acts on
inner types in two different ways:

id : (A : U0) → A → A id′ : (A :⇑U0) →⇑(↓ A) →⇑(↓ A)

id :≡ λ0Ax. x id′ :≡ λ1Ax. x

The first one lives in the inner family structure. The second one is the same thing, but lifted
to the outer theory. The choice between the two allows us to control staging-time evaluation.
If we write id Bool0 true0, that is an inner expression which goes into the staging output as it
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is. On the other hand, ↓ (id′ (↑ Bool0) (↑ true0)) reduces to ↓ (↑ true0) which in turn reduces
to true0. The same choice can be expressed in our syntax as well:

id : Tm0 ((A : U0) → A → A) id′ : (A : Tm0 U0) → Tm0A → Tm0A

id :≡ λ0Ax. x id′ :≡ λAx. x

It remains to be checked which style is preferable in a staging implementation. In the ⇑ style,
the quoting and splicing operations add noise to core syntax, but they are also mostly inferable
during elaboration, and they pack stage-changing information into ↑ and ↓, thereby making it
feasible to omit stage annotations in other places in the core syntax. In the Ty0 style, we do
not have quote/splice, but we have to keep track of stages in all type/term formers. It would
be interesting to compare the two flavors in prototype implementations of staged systems.

3.4 Presheaf Semantics of 2LTT

We review the standard semantics of 2LTT which we use in the rest of the thesis. This justifies
the metaprogramming view, that 2LTT allows meta-level reasoning about an inner theory.

We present it in two steps, by assuming progressively more structure in the inner theory.
First, we only assume a category. This already lets us present a presheaf semantics for the
outer layer. Then, we assume a cwf as the inner theory, which lets us interpret Ty0 and Tm0

and also consider inner type formers.

3.4.1 Presheaf Model of the Outer Layer

In this subsection we present a presheaf model for the outer layer of 2LTT, that is, the base
category together with the terminal object, the (Ty, Tm) family and some type formers. This
presheaf semantics is well-known in the literature [Hof97]. We give a specification which follows
[Hub16] most closely.

In the following, we work outside 2LTT (since we are defining a model of 2LTT), in a
suitable metatheory; an extensional type theory with enough Set universes suffices.

We assume a C category. We write i, j, k : |C| for objects and f, g, h : C(i, j) for mor-
phisms. We use a different notation than for cwfs before, in order to disambiguate components
in C from components in the presheaf model of 2LTT. We use Ĉ to refer to the model which is
being defined. We use the same component names for Ĉ as in Section 3.2.

Model of cwf

Definition 23. Γ : Con is a presheaf over C. Its components are as follows.

|Γ| : |C| → Set

–⟨–⟩ : |Γ| j → C(i, j) → |Γ| i
γ⟨id⟩ ≡ γ

γ⟨f ◦ g⟩ ≡ γ⟨f⟩⟨g⟩

We flip around the order of arguments in the action of Γ on morphisms. This is more convenient
because of the contravariance; we can observe this in the statement of preservation laws already.
The action on morphisms is sometimes called restriction.
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Definition 24. σ : SubΓ∆ is a natural transformation from Γ to ∆. It has action |σ| : |Γ| i →
|∆| i, such that |σ|(γ⟨f⟩) ≡ (|σ|γ)⟨f⟩.

Definition 25. A : TyΓ is a displayed presheaf over Γ. The “displayed” here is used in exactly
the same sense as in “displayed algebra” before. As we will see in Chapter 4, presheaves can
be specified with a signature, in which case a presheaf is an algebra, and a displayed presheaf
is a displayed algebra. The definition here is equivalent to saying that A is a presheaf over
the category of elements of Γ, but it is more convenient to use in concrete definitions and
calculations. The components of A are as follows.

|A| : |Γ| i → Set

–⟨–⟩ : |A| γ → (f : C(i, j)) → |A| (γ⟨f⟩)
α⟨id⟩ ≡ α

α⟨f ◦ g⟩ ≡ α⟨f⟩⟨g⟩

Definition 26. t : TmΓA is a section of the displayed presheaf A. This is again the same
notion of section that we have seen before, instantiated for presheaves.

|t| : (γ : |Γ| i) → |A| γ
|t|(γ⟨f⟩) ≡ (|t|γ)⟨f⟩

Definition 27. Γ ▷ A : Con is the total presheaf of the displayed presheaf A. Its action on
objects and morphisms is the following.

|Γ ▷ A| :≡ (γ : |Γ| i)× |Aγ|
(γ, α)⟨f⟩ :≡ (γ⟨f⟩, α⟨f⟩)

The id and –◦– preservation laws follow immediately.

Definition 28. A[σ] : TyΓ is defined as follows, assuming A : Ty∆ and σ : SubΓ∆.

|A[σ]| γ :≡ |A| (|σ| γ)
α⟨f⟩ :≡ α⟨f⟩

In the second component, we use –⟨–⟩ for A on the right hand side. The definition is well-
typed since |A| (|σ| (γ⟨f⟩)) ≡ |A| ((|σ| γ)⟨f⟩) by the naturality of σ. Functoriality follows from
functoriality of A.

It is easy to check that the above definitions can be extended to a cwf.

• For the base category, we take the category of presheaves.

• The empty context • is the terminal presheaf, i.e. the constantly ⊤ functor.

• Type substitution is functorial, as it is defined as simple function composition of actions
on objects.

• Term substitution is defined as composition of a section and a natural transformation;
and also functorial for the same reason.

• Context comprehension structure follows from the Σ-based definition for context exten-
sion.
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Yoneda embedding

Before continuing with interpreting type formers in Ĉ, we review the Yoneda embedding, as it
is useful in subsequent definitions.

Definition 29. The Yoneda embedding, denoted y, is a functor from C to the underlying
category of Ĉ, defined as follows.

y : |C| → Con y : C(i, j) → Sub (y i) (y j)

y i :≡ C(– , i) |y f | g :≡ f ◦ g

Lemma 1 (Yoneda lemma). We have Sub (y i) Γ ≃ |Γ| i as an isomorphism of sets, natural
in i [ML98, Section III.2].

Corollary. If we choose Γ to be yj, it follows that Sub (y i) (y j) ≃ C(i, j), i.e. that y is bijective
on morphisms; hence it is an embedding.

Notation 9. For γ : |Γ| i, we use γ⟨–⟩ : Sub (y i) Γ to denote transporting right-to-left along the
Yoneda lemma. In the other direction we do not really need a notation, since from σ : Sub (y i) Γ
we get |σ| id : |Γ| i.

Type formers

Definition 30. Constant families are displayed presheaves which do not depend on their
context.

K : Con → {Γ : Con} → TyΓ

|K∆| {i} γ :≡ |∆| i
δ⟨f⟩ :≡ δ⟨f⟩

With this definition, we have TmΓ (K∆) ≡ SubΓ∆ so we have strict constant families.

Notation 10. It is useful to consider any set as a constant presheaf, so given A : Set we may
write A : Con for the constant presheaf as well.

Definition 31. From any A : Set, we get KA : TyΓ. This can be used to model negative or
positive closed type formers. For example, natural numbers are modeled as KN, Booleans
as KBool, the unit type as K⊤, and so on.

Definition 32. Coquand universes can be defined as follows. We write SetĈ for the outer
universe in the model, to distinguish it from the external Set. Since the SetĈ is a non-dependent
type, it is helpful to define it as a SetĈ : Con such that SubΓ SetĈ ≃ TyΓ. The usual universe
can be derived from this as KSetĈ. Again, we ignore size issues; the fully formal definition

would involve indexing constructions in Ĉ by universe levels.
We can take a hint from the Yoneda lemma. We aim to define |SetĈ| i, but by the Yoneda

lemma it is isomorphic to Sub (yi) SetĈ. However, by specification this should be isomorphic to
Ty (y i), so we take this as definition:

SetĈ : Con

|SetĈ| i :≡ Ty (y i)

A⟨f⟩ :≡ A[yf ]
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In the A⟨f⟩ definition, we substitute A : Ty (y i) with yf : Sub (yj) (yi) to get an element of
Ty (yj). The required SubΓ SetĈ ≃ TyΓ is straightforward, so we omit the definition.

We note that Russell universes are not supported in the outer layer, as SubΓ SetĈ and TyΓ
are not strictly the same, in particular they have a different number of components as iterated
Σ-types. Nevertheless, as we mentioned in Section 3.3.2, we use Russell-style notation in the
internal 2LTT syntax, and assume that encoding/decoding is inserted by elaboration.

Definition 33. Σ-types are defined pointwise. The definitions for pairing and projections
follow straightforwardly.

Σ : (A : TyΓ) → Ty (Γ ▷ A) → TyΓ

|ΣAB| γ :≡ (α : |A| γ)× |B| (γ, α)
(α, β)⟨f⟩ :≡ (α⟨f⟩, β⟨f⟩)

Definition 34. We define Π-types in the following. This is a bit more complicated, so first
we look at the simpler case of presheaf exponentials. We source this example from [MM12,
Section I.]. The reader may refer to ibid. for an overview of constructions in presheaf categories.

The exponential ∆Γ : Con is characterized by the isomorphism Sub (Ξ⊗Γ)∆ ≃ SubΞ (∆Γ),
where we write ⊗ for the pointwise product of two presheaves. We can again use the Yoneda
lemma. We want to define |∆Γ| i, but this is isomorphic to Sub (yi) (∆Γ), which should be
isomorphic to Sub (yi⊗ Γ)∆ by the specification of exponentials. Hence:

|∆Γ| i :≡ Sub (yi⊗ Γ)∆

σ⟨f⟩ :≡ σ ◦ (yf ◦ p, q)

In the definition of presheaf restriction, we use p, q as projections and –,– as pairing for
⊗. In short, (yf ◦ p, q) is the same as the morphism lifting from Definition 13: it weakens
yf : Sub (yj) (yi) to Sub (yj ⊗ Γ) (yi⊗ Γ).

The dependently typed case follows the same pattern, except that we use Tm and – ▷ –
instead of Sub and –⊗–. Additionally, the action on objects depends on γ : |Γ| i, and we make
use of γ⟨–⟩ : Sub (yi) Γ (introduced in Notation 9).

Π : (A : TyΓ) → Ty (Γ ▷ A) → TyΓ

|ΠAB| {i} γ :≡ Tm (yi ▷ A[γ⟨–⟩]) (B[γ⟨–⟩ ◦ p, q])

t⟨f⟩ :≡ t[yf ◦ p, q]

Let us unfold the above definition a bit. Assuming t : |ΠAB| {i} γ, we have

|t| : {j : |C|} → ((f, α) : (f : C(j, i))× |A| (γ⟨f⟩)) → |B| (γ⟨f⟩, α)

This is a bit clearer if we remove the Σ-type by currying.

|t| : {j : |C|}(f : C(j, i))(α : |A| (γ⟨f⟩)) → |B| (γ⟨f⟩, α)

Restriction is functorial since it is defined as Tm substitution. The definitions for lam and
app are left to the reader.
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Definition 35. Extensional identity is defined as pointwise equality of sections:

Id : TmΓA → TmΓA → TyΓ

|Id t u| γ :≡ |t| γ ≡ |u| γ

For the restriction operation, we have to show that |t| γ ≡ |u| γ implies |t| (γ⟨f⟩) ≡ |u| (γ⟨f⟩).
This follows from congruence by –⟨f⟩ and naturality of t and u. The defining (reflect, refl) :
TmΓ (Id t u) ≃ (t ≡ u) isomorphism is evident from UIP and function extensionality for the
metatheoretic –≡ – relation.

3.4.2 Modeling the Inner Layer

We assume now that C is a cwf. We write types as a, b, c : TyC i and terms as t, u, v : TmC i a.
We reuse • for the terminal object and – ▷ – for context extension, and likewise reuse notation
for substitutions.

Definition 36 (Ty0, Tm0). First, note that TyC is a presheaf over C, and TmC is a displayed
presheaf over TyC; this follows from the requirement that they form a family structure over C.
Hence, in the presheaf model TyC is an element of Con and TmC is an element of TyTyC. Also
recall from Definition 30 that TmΓ (K∆) ≡ SubΓ∆. With this is mind, we give the following
definitions:

Ty0 : TyΓ Tm0 : TmΓTy0 → TyΓ

Ty0 :≡ KTyC Tm0A :≡ TmC[A]

TmC[A] is well-typed since A : TmΓ (KTyC), thus A : SubΓTyC. In other words, A is a natural
transformation from Γ to the presheaf of inner types.

Inner type formers

Can type formers in (TyC, TmC) be transferred to (Ty0, Tm0) in the presheaf model of 2LTT?
For example, if C supports Bool, we would like to model Bool0 in Ty0 as well. The following
explanation is adapted from Capriotti [Cap17, Section 2.3].

Generally, a type former in C transfers to Ĉ if it can be specified in the internal language of
Ĉ. This is also a core idea of HOAS: when working in Ĉ, everything is natural, and we can omit
boilerplate related to contexts and substitutions. Recall from Section 3.3.2 the higher-order
specification of inner functions:

Π0 : (A : Ty0) → (Tm0A → Ty0) → Ty0
(app0, lam0) : Tm0 (Π0AB) ≃ ((a : Tm0A) → Tm0 (B a))

We can say that this defines what it means for C to support Π. More precisely:

• A type former in an object theory is specified with a closed type A in a 2LTT.

• A model of the object theory C supports a type former A if there is a global section of
the Ĉ interpretation of A.
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• Thus, if C supports a type former, it is immediate that the specifying type is inhabited
in Ĉ.

In this thesis we only mention type formers in type theories which can be specified in such
manner.

3.4.3 Functions With Inner Domains

There is a useful semantic simplification in the standard presheaf model, in cases where we have
functions of the form Π (Tm0A)B. This greatly reduces encoding overhead when interpreting
inductive signatures in 2LTT; we look at examples in Section 3.5. First we look at the simply-
typed case with presheaf exponentials.

Lemma 2. y preserves finite products up to isomorphism, i.e. y• ≃ • and y(i⊗ j) ≃ (yi⊗ yj).

Proof. y• is C(– , •) by definition, which is pointwise isomorphic to ⊤, hence isomorphic to
• ≡ K⊤. y(i⊗j) is C(– , i⊗j), which is isomorphic to yi⊗yj by the specification of products.

Lemma 3. We have the following isomorphism.

|Γyi| j ≡
Sub (yj ⊗ yi) Γ ≃ by product preservation

Sub (y(j ⊗ i)) Γ ≃ by Yoneda lemma

|Γ| (j ⊗ i)

It is possible to rephrase the above derivation for Π-types. For that, we would need to define
the action of y on types and terms, consider the preservation of – ▷ – by y, and also specify
a “dependent” Yoneda lemma for Tm. For the sake of brevity, we omit this, and present the
result directly:

|Π(Tm0A)B| {i} γ ≃ |B| {i ▷ |A| γ} (γ⟨p⟩, q)

In short, depending on an inner domain is the same as depending on an extended context in
C. We expand a bit on the typing of the right hand side. We have γ : |Γ| i, moreover

|B| : {j : C} → |Γ ▷ Tm0A| j → Set

|B| : {j : C} → ((γ′ : |Γ| j)× TmC j (|A| γ′)) → Set

|B| {i ▷ |A| γ} : ((γ′ : |Γ| (i ▷ |A| γ))× TmC (i ▷ |A| γ) (|A| γ′)) → Set

γ⟨p⟩ : |Γ| (i ▷ |A| γ)
q : TmC (i ▷ |A| γ) ((|A| γ)[p])
q : TmC (i ▷ |A| γ) (|A| (γ⟨p⟩))

3.5 Simple Signatures in 2LTT

We revisit simple inductive signatures in this section, working internally to 2LTT. We review
the concepts introduced in Chapter 2 in the same order.
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Notation 11. In this section we shall be fairly explicit about writing Tm0-s and transporting
along definitional isomorphisms. The simple setting makes it feasible to be explicit; in later
chapters we are more terse, as signatures and semantics get more complicated.

3.5.1 Theory of Signatures

Signatures are defined exactly in the same way as before: we have Con : Set, Ty : Set, Sub :
Con → Con → Set, Var : Con → Ty → Set and Tm : Con → Ty → Set. However, now by Set we
mean the outer universe of 2LTT. Thus signatures are inductively defined in the outer layer.

3.5.2 Algebras

Again we compute algebras by induction on signatures, but now we use inner types for carriers
of algebras. We interpret types as follows:

–A : Ty → Ty0 → Set

ιA X :≡ Tm0X

(ι → A)AX :≡ Tm0X → AA X

Elsewhere, we change the type of the X parameters accordingly:

–A : Con → Ty0 → Set

–A : VarΓA → {X : Ty0} → ΓAX → AA X

–A : TmΓA → {X : Ty0} → ΓA X → AA X

–A : SubΓ∆ → {X : Ty0} → ΓAX → ∆A X

We also define AlgΓ as (X : Ty0)× ΓA X.

Example 8. Inside 2LTT we have the following:3

Alg NatSig ≡ (X : Ty0)× (zero : Tm0X)× (suc : Tm0X → Tm0X)

Then, we may assume any cwf C, and interpret the above closed type in the presheaf model Ĉ,
and evaluate the result at • and the unique element of the terminal presheaf K⊤:

|Alg NatSig| {•} tt : Set

We compute the definitions now. We use the simplified semantics for suc : Tm0X → Tm0X,
since the function domain is an inner type.

|Alg NatSig| {•} tt ≡ (X : TyC •)× (zero : TmC •X)× (suc : TmC (• ▷ X)X)

Using the same computation, we get the following for binary trees:

|Alg TreeSig| {•} tt ≡ (X : TyC •)× (leaf : TmC •X)× (node : TmC (• ▷ X ▷ X)X)

3Up to isomorphism, since we previously defined ΓA as a function type instead of an iterated product type.



CHAPTER 3. SEMANTICS IN TWO-LEVEL TYPE THEORY 35

We can also get internal algebras in any C category with finite products because we can
build cwfs from all such C.

Definition 37. Assuming C with finite products, we build a cwf by setting Con :≡ |C|, TyΓ :≡
|C|, SubΓ∆ :≡ C(Γ, ∆), TmΓA :≡ C(Γ, A), Γ ▷ A :≡ Γ⊗A and • :≡ •C. In short, we build a
non-dependent (simply-typed) cwf.

Now we can effectively interpret signatures in finite product categories. For example:

|Alg NatSig| {•} tt ≡ (X : |C|)× (zero : C(•, X))× (suc : C(• ⊗X, X))

This is almost the same as what we would write by hand for the specification of natural number
objects; the only difference is the extra • ⊗ – in suc.

3.5.3 Morphisms

We get an additional degree of freedom in the computation of morphisms: preservation equa-
tions can be inner or outer. The former option is weak or propositional preservation, while
the latter is strict preservation. In the presheaf model of 2LTT, outer equality is definitional
equality of inner terms, while inner equality is propositional equality in the inner theory. Of
course, if the inner theory has extensional identity type, weak and strict equations in 2LTT are
equivalent for inner types. We compute weak preservation for types as follows.

–M : (A : Ty){X0X1 : Ty0}(XM : Tm0X0 → Tm0X1) → AAX0 → AA X1 → Set

ιM XM α0 α1 :≡ Tm0 (X
M α0 = α1)

(ι → A)M XM α0 α1 :≡ (x : Tm0X0) → AM XM (α0 x) (α1 (X
M x))

For strict preservation, we simply change Tm0 (X
M α0 = α1) to XM α0 ≡ α1. The definition of

morphisms is the same as before:

–M : (Γ : Con1){X0X1 : Ty0} → (Tm0X0 → Tm0X1) → ΓAX0 → ΓA X1 → Set

ΓM XM γ0 γ1 :≡ {A}(x : Var1 ΓA) → AM XM (γ0 x) (γ1 x)

Mor : {Γ : Con1} → AlgΓ → AlgΓ → Set

Mor {Γ} (X0, γ0) (X1, γ1) :≡ (XM : Tm0X0 → Tm0X1)× ΓM XM γ0 γ1

We omit here the –M definitions for terms and substitutions.

3.5.4 Displayed Algebras

We present –D only for types below.

–D : (A : Ty){X} → (Tm0X → Ty0) → AAX → Set

ιD XD α :≡ Tm0 (X
D α)

(ι → A)D XD α :≡ (x : Tm0X)(xD : Tm0 (X
D x)) → AD XD (αx)

Note that in the presheaf model, inhabitants of Tm0X → Ty0 are inner types depending on
contexts extended with the interpretation of X.
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Example 9. Assume a closed (X, zero, suc) Nat-algebra in 2LTT. We have the following
computation:

DispAlg {NatSig} (X, zero, suc) ≡
(XD : Tm0X → Ty0)

× (zeroD : Tm0 (X
D zero))

× (sucD : (n : Tm0X) → Tm0 (X
D n) → Tm0 (X

D (suc n)))

Let us look at the presheaf interpretation. We simplify functions with inner domains every-
where. Also note that for suc : Tm0X → Tm0X, we get |suc| tt : TmC (• ▷ n : |X| tt) (|X| tt) in
the semantics, so a suc t application is translated as a substitution (|suc| tt)[n 7→ |t| tt].

|DispAlg {NatSig} (X, zero, suc)| {•} tt ≡
(XD : TyC (• ▷ n : |X| tt))

× (zeroD : TmC • (XD[n 7→ |zero| tt]))
× (sucD : TmC (• ▷ n : |X| tt ▷ nD : XD[n 7→ |zero| tt]) (XD[n 7→ (|suc| tt)[n 7→ n]))

To explain (|suc| tt)[n 7→ n]): we have sucn in 2LTT, where n is an inner variable, and in
the presheaf model inner variables become actual variables in the inner theory. Hence, we map
the n which suc depends on to the concrete n in the context.

We can also interpret displayed algebras in finite product categories:

|DispAlg {NatSig} (X, zero, suc)| {•} tt ≡
(XD : |C|)

× (zeroD : C(•, XD))

× (sucD : C(• ⊗ |X| tt⊗XD, XD))

While displayed algebras in cwfs can be used as bundles of induction motives and methods,
in finite product categories they are argument bundles to primitive recursion; this is sometimes
also called a paramorphism [MFP91]. In an internal syntax, the type of primitive recursion for
natural numbers could be written more compactly as:

primrec : (X : Set) → X → (Nat → X → X) → Nat → X

This is not the same thing as the usual recursion principle (corresponding to weak initiality)
because of the extra dependency on Nat in the method for successors.

3.5.5 Sections

Sections are analogous to morphisms. We again have a choice between weak and strict preser-
vation; below we have weak preservation.

–S : (A : Ty){X XD}(XS : (x : Tm0X) → Tm0 (X
D x))

→ (α : AA X) → AD XD α → Set

ιS XS α αD :≡ Tm0 (X
S α = αD)

(ι → A)S XS α αD :≡ (x : Tm0X) → AS XS (αx) (αD (XS x))
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3.5.6 Term Algebras

For term algebras, we need to assume a bit more in the inner theory. For starters, it has to
support the theory of signatures. In order to avoid name clashes down the line, we use SigTy0
to refer to signature types, and SigTm0 for terms. That is, we have

SigTy0 : Ty0
Con0 : Ty0
Var0 : Tm0 Con0 → Tm0 SigTy0 → Ty0
SigTm0 : Tm0 Con0 → Tm0 SigTy0 → Ty0
Sub0 : Tm0 Con0 → Tm0 Con0 → Ty0

together with all constructors and induction principles. We also assume inner Π-types because
we previously defined Sub using functions.

Remark. If we only want to construct term algebras, it is not necessary to assume inner
induction principles. In this section, our goal is to redo the constructions of Chapter 2 without
making essential changes, so we just assume everything that was available there.

We still have ToS in the outer layer. To make the naming scheme consistent, we shall write
outer ToS types as SigTy1, SigTm1, Con1, Var1 and Sub1. We have conversion functions from
the outer ToS to the inner ToS:

Definition 38. We have the following lowering functions which preserve all structure.

↓ : SigTy1 → Tm0 SigTy0
↓ : Con1 → Tm0 Con0

↓ : Var1 ΓA → Tm0 (Var0 (↓Γ) (↓A))
↓ : SigTm1 ΓA → Tm0 (SigTm0 (↓Γ) (↓A))
↓ : Sub1 Γ∆ → Tm0 (Sub0 (↓Γ) (↓δ))

These are called “lifting” or “serialization” in the context of multi-stage programming; see e.g.
the Lift typeclass in Haskell [PWK19]. There, like here, the point is to build object-language
terms from meta-level (“compile-time”) values.

Lowering is straightforward to define for types, contexts, variables and terms, but there
is a bit of a complication for Sub. Unfolding the definitions, we need to map from {A} →
Var1∆A → SigTm1 ΓA to Tm0 ({A} → Var0 (↓ ∆)A → SigTm0 (↓ Γ)A). It might appear
problematic that we have types and variables in negative position because we cannot map
inner types/variables to outer ones. Fortunately, Sub1 Γ∆ is isomorphic to a finite product
type, and we can lower a finite product component-wise.

Concretely, we define lowering by induction on ∆, while making use of a case splitting
operation for Var0. We use an informal case operation below, which can be defined using inner
induction. Note that since Var0 •A is an empty type, case splitting on it behaves like elimination
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for the empty type.

↓∆: Sub1 Γ∆ → Tm0 (Sub0 (↓Γ) (↓∆))

↓• σ :≡ λ {A} (x : Var0 •A). casex of ()

↓∆▷B σ :≡ λ {A} (x : Var1 (↓∆ ▷ ↓B)A). casex of

vz → ↓(σ vz)

vsx → ↓∆ (σ ◦ vs)x

In general, for finite A type, functions of the form A → Tm0B can be represented as inner
types up to isomorphism; they can be viewed as finite products of terms.

Remark. For infinite A this does not work anymore in our system. In [ACKS19], the as-
sumption that this still works with A ≡ Nat1 is an important axiom (“cofibrancy of Nat1”)
which makes it possible to embed higher categorical structures in 2LTT. From the metapro-
gramming perspective, cofibrancy of Nat1 implies that the inner theory is infinitary, since we
can form inner terms from infinite collections of inner terms. We do not assume this axiom in
2LTT, although we will consider infinitary (object) type theories in Chapters 4 and 5.

We proceed to the definition of term algebras. We fix an Ω : Con1, and define T : Ty0 as
SigTm0 (↓Ω) ι.

–T : (A : SigTy1) → Tm0 (SigTm0 (↓Ω) (↓A)) → AA T

ιT t :≡ t

(ι → A)T t :≡ λu.AT (app t u)

–T : (Γ : Con1) → Sub1ΩΓ → ΓA T

ΓT ν {A}x :≡ AT (↓(ν x))

TmAlgΩ : AlgΩ

TmAlgΩ :≡ ΩT Ω id

We omit the –T interpretation for terms and substitutions for now, as they require a bit more
setup, and they are not needed just for term algebras.

3.5.7 Recursor Construction

Recall from Section 2.3.1 that recursion is implemented using the –A interpretation of terms.
Since terms are now in the inner theory, we need to define an inner version of the same interpre-
tation. We need to compute types by inner induction, so we additionally assume a Russell-style
inner U0 universe. The Russell style means that we may freely coerce between Tm0 U0 and Ty0.
The following are defined the same way as –A before.

–A : Tm0 (SigTy0 → U0 → U0)

–A : Tm0 (Con0 → U0 → U0)

–A : Tm0 (SigTm0 ΓA → {X : U0} → ΓA X → AA X)

–A : Tm0 (Sub0 Γ∆ → {X : U0} → ΓA X → ∆AX)
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Since lowering preserves all structure, and –A is defined in the same way in both the inner and
outer theories, lowering is compatible with –A in the following way.

Lemma 4. Assume A : SigTy1, Γ : Con1, X : Ty0, γ : ΓAX and t : SigTm1 ΓA. We have the
following:

• (AA
→, A

A
←) : Tm0 ((↓A)A X) ≃ AAX

• (ΓA
→, Γ

A
←) : Tm0 ((↓Γ)AX) ≃ ΓAX

• tA γ ≡ AA
→ ((↓ t)A (ΓA

← γ))

Proof. By induction on Γ, A and t.

We construct recursors now, yielding strict algebra morphisms. We assume (X, ω) : AlgΩ.
Recall that ω : ΩA X, thus ΩA

← ω : Tm0 ((↓ Ω)AX). We define R : Tm0 T → Tm0X as
R t :≡ tA (ΩA

← ω).

–R : (A : SigTy1)(t : Tm0 (SigTm0 (↓Ω) (↓A))) → AM R (AT t) (AA
→ (tA (ΩA

← ω)))

ιR t : tA (ΩA
← ω) ≡ ιA→ (tA (ΩA

← ω))

(ι → A)R t :≡ λu.AR (app t u)

–R : (Γ : Con1)(ν : Sub1ΩΓ) → ΓM R (ΓT ν) (νA ω)

ΓR ν {A}x :≡ AR (↓(ν x))

In the proof obligation for tA (ΩA
← ω) ≡ ιA→ (tA (ΩA

← ω)), ιA→ computes to the identity function;
note that ιA→ : Tm0X → Tm0X. Hence the equality becomes reflexive.

In ΓR ν {A}x :≡ AR (↓(ν x)), we have that

AR (↓(ν x)) : AM R (AT (↓(ν x))) (AA
→ (↓(ν x)A (ΩA

← ω)))

Hence by Lemma 4, we have

AR (↓(ν x)) : AM R (AT (↓(ν x))) ((ν x)A ω)

Hence, by the definition of –A for substitutions:

AR (↓(ν x)) : AM R (AT (↓(ν x))) (νA ω x)

Which is exactly what is required when we unfold the expected return type:

–R : (Γ : Con1)(ν : Sub1ΩΓ) → ΓM R (ΓT ν) (νA ω)

–R : (Γ : Con1)(ν : Sub1ΩΓ) → {A}(x : Var1 ΓA) → AM R (AT (↓(ν x))) (νA ω x)

The recursor is defined the same way as in Definition 10:

RecΩ : (alg : AlgΩ) → Mor TmAlgΩ alg

RecΩ (X, ω) :≡ (R, ΩR Ω id)
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3.5.8 Eliminator Construction

For induction, we need to additionally define –D in the inner layer.

–D : Tm0 ((A : SigTy0){X} → (Tm0X → U0) → AAX → U0)

–D : Tm0 ((Γ : Con0){X} → (Tm0X → U0) → ΓA X → U0)

–D : Tm0 ((t : SigTm0 ΓA) → ΓD XD γ → AD XD (tA γ))

–D : Tm0 ((σ : Sub0 Γ∆) → ΓD XD γ → ∆D XD (σA γ))

Lemma 5. We have again compatibility of lowering with –D. Assuming (X, γ) : AlgΓ,
(XD, γD) : DispAlg (X, γ), t : SigTm1 ΓA, and α : AAX, we have

• (AD
→, A

D
←) : Tm0 ((↓A)D XD (AA

← α)) ≃ AD XD α

• (ΓD
→, Γ

D
←) : Tm0 ((↓Γ)D XD (ΓA

← γ)) ≃ ΓD XD γ

• tD γD ≡ AD
→ ((↓ t)D (ΓD

← γD))

The equation for tD γD is well-typed because of the term equation in Lemma 4.

Proof. Again by induction on Γ, A and t.

We also need to extend –T with action on terms. Note that we return an inner equality,
since we can only compute such equality by induction on the inner term input:

–T : (t : SigTm0 (↓Γ) (↓A))(ν : Sub1ΩΓ) → Tm0 (A
A
← (AT (t[↓ν])) = tA (ΓA

← ν))

We assume (XD, ωD) : DispAlg TmAlgΩ, and define elimination as follows:

E : (t : Tm0 T) → Tm0 (X
D t)

E t :≡ tD (ΩD
← ωD)

This definition is well-typed only up to tT id : Tm0 (t = tA (ΩA
← (ΩT Ω id))). Since tT id is an

inner equality, in a fully formal intensional presentation we would have to write an explicit
transport in the definition.

We shall skip the remainder of the eliminator construction; it goes the same way as in
Definition 11. Intuitively, this is possible since the inner theory has all necessary features to
reproduce the eliminator construction, and lowering preserves all structure.

Since tT yields inner equations, this implies that the displayed algebra sections returned by
the eliminator are weak sections, i.e. they contain β-rules expressed in inner equalities.

3.5.9 Strict Elimination

If we want to use term algebras in generic programming, having only weak β-rules in elimination
is inconvenient. We make a brief digression here, to define an alternative eliminator which
computes strictly. The idea is to specialize the notion of displayed algebras to the term algebra,
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and likewise give a specialized definition for the eliminator function. We fix Ω : Con1 and
XD : Tm0 (SigTm0 (↓Ω) ι) → Ty0.

–D : (A : SigTy1) → Tm0 (SigTm0 (↓Ω) (↓A)) → Ty0

ιD XD α :≡ XD α

(ι → A)D XD α :≡ (u : SigTm0Ω ι) → XD u → AD XD (αu)

ΩD : Set

ΩD :≡ {A : SigTy1}(x : Tm0 (Var0 (↓Ω) (↓A))) → Tm0 (A
D (var x))

Elim : {A : SigTy1} → ΩD → (t : Tm0 (SigTm0 (↓Ω) (↓A))) → Tm0 (A
D t)

ElimωD (var x) :≡ ωD x

ElimωD (app t u) :≡ ElimωD t u (ElimωD u)

Now, Elim {ι} has type ΩD → Tm0 ((t : SigTm0 (↓Ω) ι) → XD t). Since ΩD is a finite product
of inner types, it’s isomorphic to an inner type, so we can extract a purely inner eliminator:

Elim : (XD : SigTm0 (↓Ω) ι → U0) → ΩD → (t : SigTm0 (↓Ω) ι) → XD t.

Here, ΩD specifies induction methods, and the eliminator is defined by inner induction on terms.
Compare this to the previously constructed weak eliminator, where we had to transport the
result over tT id. The extra transport precluded strict β-rules in that case, since transports do
not definitionally compute on inductive constructors in the inner theory.

However, the weak eliminator construction is overall more regular and scales better to more
complicated theories of signatures, as we will see in Sections 4.4 and 5.6. Also, in these Sections
we will assume equality reflection everywhere so weak and strict β-rules will coincide. Another
advantage of the weak eliminator construction is that it builds on definitions that are already
available from the semantics of signatures. In contrast, strict eliminators should be connected
back to the semantics in a separate step: we should show that strict elimination yields a
displayed algebra section, and that the two definitions of displayed algebras are equivalent. We
do not detail these here.



CHAPTER 4

Finitary Quotient Inductive-Inductive Signatures

In this chapter we bump the expressive power of signatures by a large margin, and also sub-
stantially extend the semantics. However, we keep the basic approach the same; indeed its
advantages become apparent with the more sophisticated signatures.

We use two different setups for semantics in this chapter.

• In Sections 4.1-4.2.7 we work in 2LTT, thereby getting a generalized semantics for signa-
tures. Here we keep details about universe levels to the minimum.

• In Section 4.4, we work in an extensional type theory with cumulative universes. This
is more suited for the term algebra construction, where (as we will see) 2LTT does not
bring any advantage, but we do need to be more precise about universes.

4.1 Theory of Signatures

Signatures are once again given by contexts of a type theory, but now it is a dependent type
theory, given as a cwf with certain type formers, in the style of Section 3.2.

Metatheory and terminology

We work in 2LTT with Ty0 and Tm0, and make the following assumptions:

• Ty0 is closed under ⊤, Σ and extensional identity – = –. The inner identity reflects the
outer one.

• The outer identity –≡ – is also extensional; it reflects strict equality in some unspecified
metatheory outside 2LTT. This justifies omitting transports along –≡ – in our notation.

In the following we specify models of the theory of finitary quotient inductive-inductive
signatures. The names involved are a bit of a mouthful, so we abbreviate “finitary quotient
inductive-inductive” as FQII, and like before, we abbreviate “theory of signatures” as ToS. In
this chapter, by signature we mean an FQII signature unless otherwise specified.

Additionally, we abbreviate “quotient inductive-inductive types” as QIIT, and we may
qualify it to FQIIT if it is finitary. A type in this sense is simply the initial algebra for a
given FQII signature. We shall use this naming in the rest of the thesis; an inductive type is
an initial algebra for a signature. Also, we use syntax as a synonym for initial algebra.

42
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Definition 39. A model of the theory of signatures consists of the following.

• A cwf with underlying sets Con, Sub, Ty and Tm, all returning in the outer Set universe
of 2LTT.

• A Tarski-style universe U with decoding El.

• An extensional identity type Id : TmΓA → TmΓA → TyΓ, specified by (reflect, refl) :
TmΓ (Id t u) ≃ (t ≡ u).

• An internal product type Π : (a : TmΓU) → Ty (Γ ▷ El a) → TyΓ, specified by
(app, lam) : TmΓ (Π aB) ≃ Tm (Γ ▷ El a)B.

• An external product type ΠExt : (Ix : Ty0) → (Ix → TyΓ) → TyΓ, specified by
(appExt, lamExt) : TmΓ (ΠExt Ix B) ≃ ((i : Ix ) → TmΓ (B i)).

At this point we only have a notion of model for ToS, but as we will see in Chapter 5, ToS
is also an algebraic theory, more specifically an infinitary QII one. It is infinitary because ΠExt

and lamExt allow branching which is indexed over elements of arbitrary Ix : Ty0 types.
Because of the algebraic character of ToS, there is a category of ToS models where morphisms

strictly preserve all structure, and the initial model corresponds to the syntax. We will make
this precise in Chapter 5. We also assume that the ToS syntax exists.

Definition 40. An FQII signature is an element of Con in the syntax of ToS.

We review several example signatures in the following, using progressively more ToS type
formers. We also introduce progressively more compact notation for signatures. As a rule of
thumb, we shall use compact notation for larger and more complex signatures, but we shall be
more explicit when we specify models of ToS later in this chapter.

Example 10. Simple inductive signatures can be evidently expressed using U and Π. By
adding a single U to the signature, we introduce the inductive sort, while Π adds an inductive
parameter to an entry.

NatSig :≡ • ▷ (N : U) ▷ (zero : ElN) ▷ (suc : Π(n : N)(ElN))

TreeSig :≡ • ▷ (T : U) ▷ (leaf : ElT ) ▷ (node : Π(t1 : T )(Π(t2 : T )(ElT )))

Observe that the domains in Π are terms with type U, while the codomains are proper types.

Notation 12. We write non-dependent product types in ToS as follows.

• a ⇒ B for Π ( : a)B.

• Ix ⇒Ext B for ΠExt Ix (λ .B).

Using this notation, we may write suc : N ⇒ ElN and node : T ⇒ T ⇒ ElT .

Notation 13. The “categorical” application app with explicit substitutions is a bit inconvenient.
Instead, we simply write whitespace for Π and ΠExt application:

t u :≡ (app t)[id, u]

t u :≡ (appExt t)u
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Example 11. We may have any number of sorts by adding more U to the signatures. Moreover,
sorts can be indexed over previous sorts. Hence, using only U, El and Π, we can express
any closed inductive-inductive type [NF13]. The following fragment of the the signature for
categories is such:

• ▷ (Obj : U) ▷ (Hom : Obj ⇒ Obj ⇒ U) ▷ (id : Π(i : Obj ) (El (Hom i i)))

These inductive-inductive signatures are more flexible than those in prior literature [NF13],
since we allow type constructors (sorts) and point constructors to be arbitrarily mixed, as
opposed to mandating that sorts are declared first. For example:

• ▷ (A : U) ▷ (a : ElA) ▷ (B : A ⇒ U) ▷ (C : B a ⇒ U)

Here C is indexed over B a, where a is a point constructor of a, so a sort specification mentions
a point constructor.

Example 12. Id lets us add equations to signatures. With this, we can write down the full
signature for categories:

• ▷ (Obj : U)

▷ (Hom : Obj ⇒ Obj ⇒ U)

▷ (id : Π(i : Obj ) (El (Hom i i)))

▷ (comp : Π (i j k : Obj ) (Hom j k ⇒ Hom i j ⇒ El (Hom i k)))

▷ (idr : Π (i j : Obj )(f : Hom i j) (Id (comp i i j f (id i)) f))

▷ (idl : Π (i j : Obj )(f : Hom i j) (Id (comp i j j (id j) f) f))

▷ (assoc : Π (i j k l : Obj )(f : Hom j l)(g : Hom j k)(h : Hom i j)

(Id (comp i j l (comp j k l f g)h) (comp i k l f (comp i j k g h))

Now, this is already rather hard to read, even together with a compressed notation for multiple
Π binders.

Notation 14. For more complex signatures, we may entirely switch to an internal notation,
where we mostly reuse the conventions in the metatheories, including implicit arguments and
implicit quantification. We use (x : a) → B for internal products, (x : A) →Ext B for external
products, but we still write Id for the identity type and make U and El explicit. In this notation,
a signature is just a listing of binders. The category signature becomes the following:

Obj : U

Hom : Obj → Obj → U

id : El (Hom i i)

–◦– : Hom j k → Hom i j → El (Hom i k)

idr : Id (f ◦ id) f
idl : Id (id ◦ f) f
assoc : Id (f ◦ (g ◦ h)) ((f ◦ g) ◦ h)
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Example 13. The external product type makes it possible to reference inner types (in 2LTT)
in signatures. Here “external” is meant relative to a given signature, and refers to types and
inhabitants which are not introduced inside a signature. For example, we give a signature for
lists by assuming A : Ty0 for the (external) type of list elements:

List : U

nil : El List

cons : A →Ext List → El List

Hence, “parameters” are always assumptions made in the metatheory. We can also index sorts
by external values. Let us specify length-indexed vectors now; we keep the A : Ty0 assumption,
but also assume that Ty0 has natural numbers, with Nat0 : Ty0, zero0 and suc0.

Vec : Nat0 →Ext U

nil : El (Vec zero0)

cons : (n : Nat0) →Ext A →Ext Vecn → El (Vec (suc0 n))

Example 14. We can also introduce sort equations using Id: this means equating terms of
U, i.e. inductively specified sets. This is useful for specifying certain strict type formers. For
example, a signature for cwfs can be extended with a specification for strict constant families.

Con : U

Sub : Con → Con → U

Ty : Con → U

Tm : (Γ : Con) → TyΓ → U

...

K : Con → {Γ : Con} → El (TyΓ)

Kspec : Id (TmΓ (K∆)) (SubΓ∆)

The equation for Russell-style universes is likewise a sort equation:

Univ : El (TyΓ)

Russell : Id (TmΓUniv) (TyΓ)

Example 15. As we mentioned in Definition 25, there is a signature for presheaves, so let
us look at that now. Assume a category C in the inner theory; this means that objects and
morphisms of C are in Ty0.

Obj : |C| →Ext U

Hom : C(i, j) →Ext Obj j → El (Obj i)

Homid : Id (Hom idx)x

Hom◦ : Id (Hom (f ◦ g)x) (Hom f (Hom g x))

We depart from the sugary naming scheme in Definition 25, and name the action on objects
Obj and the action on morphisms Hom. When we give semantics to this signature in Section
4.2, we will get as algebras functors from Cop to the category of inner types. That category has
elements of Ty0 as objects and Tm0A → Tm0B functions as morphisms.
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Strict positivity

Only strictly positive signatures are expressible. Similarly to the case with simple signatures,
there is no way to abstract over internal products, since internal products are indexed over
U-small types, and U has no type formers at all. With ΠExt, we can abstract over functions,
but only those which are external to a signature and do not depend on internally specified
constructions.

Limitation: nested induction

Nested induction means that external type functions may be applied to expressions internal to
the theory of signatures. This is not possible in any of the signatures in this thesis. A common
example is rose trees, assuming external List : Set → Set:

Tree : Set

node : List Tree → Tree

The List Tree expression is not representable in a signature; the List function is external, while
Tree would be an internal sort. This style of inductive definition requires reasoning about the
polarity of all external type functions: only the strictly positive Set → Set functions should
be allowed. With general type functions we would also need to track polarity of multiple
parameters, or even higher-order polarity.

Many use cases of nested induction can be removed by “including” the external type con-
structor into the signature. In the case of rose trees, this means defining lists and trees mutually:

List : U

Tree : U

nil : El List

cons : Tree → List → El List

node : List → El Tree

Of course, nested induction would be still desirable because of the code reuse that it enables.

4.2 Semantics

4.2.1 Overview

For simple signatures, we only gave semantics in enough detail so that notions of recursion and
induction could be recovered. We aim to do more now. For each signature, we would like to
have

1. A category of algebras, with homomorphisms as morphisms.

2. A notion of induction, which requires a notion of dependent algebras.

3. A proof that for algebras, initiality is equivalent to supporting induction.
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We do this by creating a model of ToS where contexts (signatures) are categories with certain
extra structure and substitutions are structure-preserving functors. Then, ToS signatures can
be interpreted in this model, using the initiality of ToS syntax (i.e. the recursor).

Our semantics has a type-theoretic flavor, which is inspired by the cubical set model of
Martin-Löf type theory by Bezem et al. [BCH14]. The idea is to avoid strictness issues by
starting from basic ingredients which are already strict enough. Hence, instead of modeling
ToS types as certain morphisms and substitution by pullback, we model types as displayed
categories with extra structure, which naturally support strict reindexing/substitution.

We make a similar choice in the interpretation of signatures themselves: we use structured
cwfs of algebras, where types correspond to displayed algebras. This choice is in contrast
to having finitely complete categories of algebras. Preliminarily, the reason is that “native”
displayed algebras and sections allow us to compute induction principles strictly as one would
write in a type theory. In fact, in this chapter we recover exactly the same semantics for
simple signatures that we already specified. In contrast, in finitely complete categories there
is no primitive notion of displayed objects, and we can only specify induction principles up to
equivalences.

This issue is perhaps not relevant from a purely categorical perspective, but we are con-
cerned with eventually implementing QIITs in proof assistants. If we do not compute induction
principles here in an exact way, we do not get them from anywhere else.

4.2.2 Separate vs. Bundled Models

Previously, we defined –A, –M , –D and –S interpretations of signatures separately, by doing
induction anew for each one. Formally, this amounts to giving a plain model of ToS in order to
define –A, but then giving three displayed models of ToS to specify the other interpretations
because they sometimes need to refer to the recursors or eliminators of other interpretations.

For example, –A : Con → Set while –D : (Γ : Con) → ΓA → Set, so displayed algebras
already refer to –A, which is part of the recursor for the corresponding model.

However, this piecewise style can be avoided: we can give a single non-displayed model
which packs everything in a Σ-type, yielding just one interpretation function for signatures.
Let us call that function –M now:

–M : Con → (A : Set)

× (M : A → A → Set)

× (D : A → Set)

× (S : (a : A) → Da → Set)

Note that it is often not possible to merge multiple recursors/eliminators by packing models
together. For example, addition on natural numbers is defined by recursion, and so is multipli-
cation; but since multiplication calls addition in an iterated fashion, it is not possible to define
both operations by a single algebra. Nevertheless, merging does work in our case. We will, in
fact, get a formal vocabulary for merging models (and manipulating them in other ways) from
the semantics of ToS itself.

In simple cases, and in Agda, the piecewise style is convenient, since we do not have to
deal with Σ-s. However, for larger models, important organizing principles may become more
apparent if we bundle things together.
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In the following, we shall define a model M : ToS such that its Con component is a bundle
containing all A, M , D, S components, plus a number of additional components. We present
the components of M in the same order as in Definition 39. There is significant overlap in
names and notations, so we use bold font to disambiguate components of M from components
of other structures. For example, we use σ : SubΓ∆ to denote a substitution in M, while
there could be Sub-named components in other structures under consideration.

4.2.3 Finite Limit Cwfs

We define Con : Set as the type of finite limit cwfs (flcwfs). Recall that this specifies the
objects of the underlying cwf of M. In the following we specify flcwfs and describe some
internal constructions.

Definition 41. We define flcwf : Set as an iterated Σ-type with the following components:

1. A cwf with Con, Sub, Ty, Tm all returning in Set. Remark: this implies that flcwf : Set is
in a larger universe than all of these internal components. We continue to elide universe
sizing details.

2. Σ-types.

3. Extensional identity type Id with refl and reflect.

4. Strict constant families K.

Definition 42. We abbreviate the additional structure on cwfs consisting of Σ, Id and K as
fl-structure.

We recover previous concepts as follows. Assuming Γ signature, we get an flcwf by inter-
preting Γ in M. In that flcwf we have

• Con as the type of algebras.

• Sub as the type of algebra morphisms.

• Ty as the type of displayed algebras.

• Tm as the type of displayed algebra sections.

From this, notions of initiality and induction are apparent as well. Initiality is the usual
categorical notion. Also note that the unit type can be derived as K •.

Definition 43. Assuming Γ : Con in a cwf, we define the induction predicate on objects:

Inductive : ConΓ → Set

InductiveΓ :≡ (A : TyΓ Γ) → TmΓ ΓA

In our semantics this will say that an algebra is inductive if every displayed algebra over it has
a section. We also know that induction and initiality are equivalent.
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Theorem 1. We assume a cwf Γ with Id and weak K. An object Γ : ConΓ supports induction
if and only if it is initial. Moreover, induction and initiality are both mere properties.

Proof. First, we show that induction implies initiality. We assume Γ : Con, ind : InductiveΓ and
∆ : Con. We aim to show that there is a unique inhabitant of SubΓ∆. We have ind (K∆) :
TmΓ (K∆), hence appK (ind (K∆)) : SubΓ∆. We only need to show that this is unique. Assume
δ : SubΓ∆. Now, ind (Id (lamK δ) (ind (K∆))) : TmΓ (Id (lamK δ) (ind (K∆))), and it follows by
equality reflection that lamK δ ≡ ind (K∆), thus δ ≡ appK (ind (K∆)).

Second, the other direction. We assume that Γ is initial, and also A : TyΓ, and aim to
inhabit TmΓA. By initiality we get a unique σ : SubΓ (Γ ▷ A). Now, q[σ] : TmΓ (A[p ◦ σ]),
but since p ◦ σ : SubΓΓ, it must be equal to id by the initiality of Γ. Hence, q[σ] : TmΓA.

Lastly: it is well-known that initiality is a mere property, so let us show the same for induc-
tion. We assume ind, ind′ : InductiveΓ and A : TyΓ. We have reflect (ind (Id (indA) (ind′A))) :
indA ≡ ind′A. Since A is arbitrary, by function extensionality we also have ind ≡ ind′.

Theorem 2. TmΓA in an cwf with Id and weak K is propositional when Γ is initial.

Proof. Assuming t, u : TmΓA, we have reflect (ind (Id t u)) : t ≡ u.

Note that the above proofs do not rely on Σ-types, so why do we include them in the
semantics? One reason is the prior result by Clairmabault and Dybjer [CD14], that a slightly
different formulation of flcwfs is biequivalent to finitely complete categories. More concretely, in
ibid. there is a 2-category of cwfs with Σ, Id and “democracy”, the last of which is equivalent to
the weak formulation of constant families. Then, it is shown that this 2-category is biequivalent
to the 2-category of finitely complete categories. Thus, including Σ is a good deal, as this allows
us to connect our semantics back to finitely complete categories, which are more common in
categorical settings.

We recover finite limits in an flcwf as follows. The product of Γ and ∆ is given by Γ ▷ K∆,
and we get projection and pairing from context comprehension. The equalizer of σ, δ : SubΓ∆
is given by Γ ▷ Idσ δ, which is well-typed because morphisms can be viewed as terms, e.g.
σ : TmΓ (K∆). The unique morphism out of the equalizer is p : Sub (Γ ▷ Idσ δ) Γ.

Our Definition 41 for flcwfs is not exactly the same as in [CD14] because our constant
families are strict. However, this only strengthens our semantics in this section, since weak
constant families can be trivially recovered from strict ones. We present some results from the
existing literature in the following.

Definition 44 (Type categories, c.f. [CD14, Section 2.2]). We work in a cwf. For each Γ : Con,
there is a category whose objects are types A : TyΓ, and morphisms from A to B are terms
t : Tm (Γ ▷ A) (B[p]). Identity morphisms are given by q : Tm (Γ ▷ A) (A[p]), and composition
t ◦ u by t[p, u]. The assignment of type categories to contexts extends to a split indexed
category. For each σ : SubΓ∆, there is a functor from Ty∆ to TyΓ, which sends A to A[σ]
and t : Tm (Γ ▷ A) (B[p]) to t[σ ◦ p, q].

Notation 15.

• In any cwf, we use σ : Γ ≃ ∆ to indicate that σ : SubΓ∆ is an isomorphism with inverse
σ−1.

• A type isomorphism, written as t : A ≃ B is an isomorphism in a type category, with
inverse as t−1.
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Theorem 3 (Equivalence of type and slice categories, c.f. [CD14, Section 2.2]). Assume that we
work in an cwf Γ with Σ, Id and weak K. For each Γ : Con, the type category TyΓ is equivalent
to the slice category Γ/Γ.

Remark. In the flcwf of sets where types are A → Set families, the above theorem yields
the equivalence of A → Set and (B : Set) × (B → A). This is sometimes called the “family-
fibration” equivalence. It is also a notable motivating example for univalence in type theory:
it is not an isomorphism of sets, but only an equivalence up to isomorphism of sets. So this
is an example for an equivalence which quite naturally arises even if we only care about sets,
but one which is not covered by set-level univalence, and additionally requires univalence for
groupoids, if we want to prove it as a propositional equality.

4.2.4 The Cwf of Finite Limit Cwfs

The next task is to define the cwf part of M. We already know that objects are flcwfs.

Category

A morphism σ : SubΓ∆ is an algebra homomorphism, viewing flcwfs as algebraic structures.
Hence, σ includes a functor between underlying categories, but it also maps types to types and
terms to terms, and strictly preserves all structure.

Notation 16. We may implicitly project out the underlying maps from σ. Hence, we have the
following four maps:

σ : ConΓ → Con∆

σ : SubΓ Γ∆ → Sub∆ (σ Γ) (σ∆)

σ : TyΓ Γ → Ty∆ (σ Γ)

σ : TmΓ ΓA → Tm∆ (σ Γ) (σA)

We list some of the preservation equations as examples of usage:

σ • ≡ •

σ (Γ ▷ A) ≡ σ Γ ▷ σA

σ (A[σ]) ≡ (σA)[σ σ]

σ (t[σ]) ≡ (σ t)[σ σ]

σ (ΣAB) ≡ Σ (σA) (σB)

σ (proj1 t) ≡ proj1 (σ t)

Above, we could have also included subscripts indicating the Γ or ∆ flcwf, as in σ •Γ ≡ •∆;
but these are quite easily inferable, so we omit them.

Identity morphisms and composition are defined in the evident way using identity
functions and function composition in underlying maps, and they satisfy the category laws.

The terminal object • : Con is given by having Con• :≡ ⊤, Sub• Γ∆ :≡ ⊤, Ty• Γ :≡ ⊤ and
Tm• ΓA :≡ ⊤, and all structure and equations are defined trivially.
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Family structure

A type A : TyΓ is a displayed flcwf over Γ. As we have seen before, displayed algebras can
be computed as logical predicate interpretations of algebraic signatures. Every A component
lies over the corresponding Γ component. Also note that a displayed flcwf includes a displayed
category, for which some results have been worked out in [AL19].

Notation 17. In situations where we need to refer to both “base” and displayed things, we give
underlined names to contexts, substitutions, types and terms in a base flcwf. For example, we
may have Γ : ConΓ living in Γ : Con, and Γ : ConA Γ living in a displayed flcwf over Γ. We only
use underlining on 2LTT variable names, and overload flcwf component names for displayed
counterparts. For example, a Con component is named the same in a base flcwf and a displayed
one.

Concretely, a displayed flcwf A over Γ has the following underlying sets, which we call
displayed contexts, substitutions, types and terms respectively.

ConA : ConΓ → Set

SubA : ConA Γ → ConA ∆ → SubΓ Γ∆ → Set

TyA : ConA Γ → TyΓ Γ → Set

TmA : (Γ : ConA Γ) → TyA ΓA → TmΓ ΓA → Set

We list several components of A below; note how every A operation lies over the corresponding
Γ operation. In our notation with implicit arguments, equations in A can be written the same
way as in Γ, but of course there is extra indexing involved, and the displayed equations are
well-typed because of their counterparts in the base.

idA : SubA ΓΓ idΓ

– ◦A – : SubA ∆Ξσ → SubA Γ∆ δ → SubA ΓΞ (σ ◦Γ δ)

idlA : idA ◦A σ ≡ σ

idrA : σ ◦A idA ≡ σ

•A : ConA •Γ

– ▷A – : (Γ : ConA Γ) → TyA ΓA → ConA Γ (Γ ▷Γ A)

–[–]A : TyA∆A → SubA Γ∆σ → TyA Γ (A[σ]Γ)

–[–]A : TmA ∆A t → (σ : SubA Γ∆σ) → TmA Γ (A[σ]A) (t[σ]Γ)

IdA : TmA ΓA t → TmA ΓAu → TyA Γ (IdΓ t u)

KA : ConA ∆ → {Γ : ConA Γ} → TyA Γ (KΓ∆)

ΣA : (A : TyA ΓA) → TyA (Γ ▷A A)B → TyA Γ (ΣΓAB)

In the following we will often omit Γ and A subscripts on components; for example, in the type
ConA •, the • is clearly a base component in Γ.

A substituted type A[σ] : TyΓ is defined as follows, for A : Ty∆ and σ : SubΓ∆. We
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simply compose underlying functions in σ with the underlying predicates in A:

ConA[σ] Γ :≡ ConA (σ Γ)

SubA[σ] Γ∆σ :≡ SubA Γ∆ (σ σ)

TyA[σ] ΓA :≡ TyA Γ (σA)

TmA[σ] ΓA t :≡ TmA ΓA (σ t)

It should be clear that A[σ] thus defined still supports all displayed flcwf structure. For
example, the displayed contexts in A[σ] are elements of ConA (σ Γ), but since σ preserves all
Γ-structure, we can also recover all displayed structure. For example, if Γ is •, we have σ • ≡ •,
and we can reuse •A : ConA • to define the displayed empty context in A[σ], and we can proceed
analogously for all other structure in A[σ].

Additionally, type substitution is functorial, i.e. A[id] ≡ A and A[σ ◦ δ] ≡ A[σ][δ]. This
holds because the underlying set families are defined by function composition.

Remark. Types could be equivalently defined as objects in flcwf/Γ, and type substitution
could be given as pullback, but in that case we would run into the well-known strictness issue,
that type substitution is functorial only up to isomorphism. This is not a critical issue, as there
are standard solutions for recovering strict substitutions from weak ones [KLV12,LW15,CD14].
But if we ever need to look inside the definitions in the model, using displayed algebras yields
less encoding overhead than strictifying pullbacks.

A term t : TmΓA is a displayed flcwf section, which again strictly preserves all structure.
We use the same notation for the action of t that we use for Sub. We have the following
underlying maps:

t : (Γ : ConΓ) → ConA Γ

t : (σ : SubΓ Γ∆) → SubA (tΓ) (t∆)σ

t : (A : TyΓ Γ) → TyA (tΓ)A

t : (t : TmΓ ΓA) → TmA (tΓ) (tA) t

A substituted term t[σ] for t : Tm∆A and σ : SubΓ∆ is again given by component-wise
function composition.

An extended context Γ ▷ A is the total flcwf of A. This is defined by combining corre-
sponding underlying sets with Σ-types:

ConΓ▷A :≡ (Γ : ConΓ)× ConA Γ

SubΓ▷A (Γ, Γ) (∆, ∆) :≡ (σ : SubΓ Γ∆)× SubA Γ∆σ

TyΓ▷A (Γ, Γ) :≡ (A : TyΓ Γ)× TyA ΓA

TmΓ▷A (Γ, Γ) (A, A) :≡ (t : TmΓ ΓA)× TmA ΓA t

All structure is defined pointwise, using Γ-structure for first projections and A-structure for
second projections. Γ ▷ A may be viewed as a dependent generalization of products of flcwfs.

Comprehension structure follows from the above definition: p is component-wise first
projection, q is second projection and substitution extension –, – is pairing.

With this, we have a cwf of flcws. Remark: the theory of flcwfs is itself algebraic and has a
finitary QII signature. Hence, if we succeed building semantics for finitary QII signatures, we
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get “for free” an flcwf of flcwfs. Of course, we cannot rely on this when we are in the process
of defining the M model in the first place. Checking that the M model indeed works, is the
somewhat tedious task that we have to perform once, in order to get semantics for any other
finitary QII theory.

4.2.5 Type Formers

Strict constant families

This was not included in the ToS specification, but it is quite useful, so we shall define it.
K∆ : TyΓ is defined by ignoring Γ inhabitants in all underlying sets:

ConK∆ Γ :≡ Con∆

SubK∆ Γ∆σ :≡ Sub∆ Γ∆

TyK∆ ΓA :≡ Ty∆ Γ

TmK∆ ΓA t :≡ Tm∆ ΓA

All structure is inherited from ∆. There is also a type substitution rule, expressing that for
σ : SubΓΞ, we have (K{Ξ}∆)[σ] ≡ K{Γ}∆. This follows immediately from the above
definition and the definition of type substitution, since the base inhabitants are ignored the
same way on both sides of the equation. We also need to show TmΓ(K∆) ≡ SubΓ∆. This
again follows directly from the K definition. From K, we get

• The unit type, defined as K • : TyΓ.

• Categorical products of Γ and ∆, defined as Γ ▷K∆.

• The ability to define closed type formers as elements of Con.

Universe

Similarly to what we did in Definition 32, we define U as a context, and use K later to get
the universe as a type. U : Con is defined to be the flcwf where objects are inner types, and
morphisms are outer functions between them:

ConU :≡ Ty0
SubU Γ∆ :≡ Tm0 Γ → Tm0∆

TyU Γ :≡ Tm0 Γ → Ty0
TmU ΓA :≡ (γ : Tm0 Γ) → Tm0 (Aγ)

Substitution for types and terms is defined by function composition. The empty context is
defined as the inner unit type ⊤0, and context extension Γ▷UA is defined as (γ : Γ)×Aγ using
inner Σ. We can also define ΣU and IdU using inner Σ and identity.

For constant families, we do not need any additional assumption in the inner theory, since
it can be defined as KU {Γ}∆ :≡ ∆, and SubU Γ∆ ≡ TmU Γ (KU∆) follows immediately.

For a : SubΓU, we have to define Ela : TyΓ. This is given as the displayed flcwf of
elements of a.
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Background: from any functor F : C → Set we can construct the category of elements∫
F , where objects are in (i : |C|) × F i and morphisms between (i, x) and (j, y) are in (f :

C(i, j)) × (F f x ≡ y). If we take the second projections of components in
∫
F , we get the

displayed category of elements, which lies over C. We may also call this a discrete displayed
category, in analogy to discrete categories whose morphisms are trivial.

We extend this to flcwfs in the definition of Ela. With this definition, Γ ▷ Ela will yield
the flcwf of elements of a.

ConEla Γ :≡ Tm0 (aΓ)

SubEla Γ∆σ :≡ aσ Γ ≡ ∆

TyEla ΓA :≡ Tm0 (aAΓ)

TmEla ΓA t :≡ a tΓ ≡ A

Let us check that we have all other structure as well.

• For contexts and types, the task is to exhibit elements of a lying over specific base contexts
and types.

• For terms and substitutions, the task is to exhibit equations which specify the action of
a.

• Equations between terms and substitutions are trivial because of UIP (we need to show
equations between equality proofs).

We summarize below the additional structure on top of the displayed category part of Ela.

• For •Ela : ConEla •, the type can be simplified along the definition of ConEla and structure-
preservation by a to Tm0⊤0. Hence, •Ela :≡ tt0 is the unique definition. For ϵ :
SubEla Γ •Ela ϵ, we have to show a ϵΓ ≡ tt0, which holds by the uniqueness of tt0.

• For Γ ▷Ela A : ConEla (Γ ▷ A), the target type unfolds to Tm0 (a (Γ ▷ A)), which in turn
simplifies to Tm0 ((γ : aΓ)× aAγ). Since Γ : Tm0 (aΓ) and A : Tm0 (aAΓ), we define
Γ ▷Ela A as (Γ, A).

• For comprehension, we have to show the following, after simplifying types:

p : a p (Γ, A) ≡ Γ

q : a q (Γ, A) ≡ A

(σ, t) : a (σ, t) Γ ≡ (∆, A)

For p and q, equations follow from preservation by a. For pairing, the goal further
simplifies to (aσ Γ, a tΓ) ≡ (∆, A). Then, the first and second components are equal by
the σ and t hypotheses.

• Assuming A : TyEla∆A and σ : SubEla Γ∆σ, we aim to define A[σ]Ela : TyEla Γ (A[σ]).
Simplifying types, A : Tm0 (aA∆), σ : aσ Γ ≡ ∆ and the target type is Tm0 (a (A[σ]) Γ),
which is the same as Tm0 (aA (aσ Γ)), by the preservation of –[–] by a. Hence, by the
σ assumption, the target type is Tm0 (aA∆), so we give the following definition:

A[σ]Ela :≡ A
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This is clearly functorial; moreover, substitution rules for the other type formers hold
trivially.

• Term substitution is given by transitivity of equality.

• For IdEla t u : TyEla Γ (Id t u), the goal type is Tm0 (a (Id t u) Γ), hence Tm0 (a tΓ = auΓ).
This holds by t : a tΓ ≡ A and u : a tΓ ≡ A. Reflexivity and equality reflection are
trivial by UIP.

• For A : TyEla ΓA and B : TyEla (Γ ▷ A)B, we aim to define ΣElaAB : TyEla Γ (ΣAB),
hence

ΣElaAB : Tm0 (a (ΣAB) Γ)

ΣElaAB : Tm0 ((A : aAΓ)× aB (Γ, A))

ΣElaAB :≡ (A, B)

Projections and pairing proceed analogously to what we did for comprehension.

• For KEla∆ : TyEla Γ (K∆), the target type simplifies to Tm0 (a∆), hence we have KEla ∆ :≡
∆. For the specifying sort equation of K, we have to show

SubEla Γ∆σ ≡ TmEla Γ (KEla ∆)σ

where σ : SubΓ∆ but at the same time σ : TmΓ (K∆) because of the K sort equation in
the base. Fortunately, both sides simplify to aσ Γ ≡ ∆.

We still have to check (Ela)[σ] ≡ El (a◦σ), the naturality rule for El. We only have to check
equality of underlying sets, Con and Ty formers, since terms and substitutions are equal by
UIP. For underlying sets, both sides compute to the following:

ConΓ :≡ Tm0 (a (σ Γ))

SubΓ∆σ :≡ a (σ σ) Γ ≡ ∆

TyΓA :≡ Tm0 (a (σA) Γ)

TmΓA t :≡ a (σ t) Γ ≡ A

Since σ also strictly preserves all structure, and we simply replace a action by the composite
a ◦σ action, it is straightforward to check that Con and Ty formers are also the same on both
sides.

At this point, we have U : Con and El : SubΓU. Let us rename them to U′ and El′

respectively, and define the usual “open” versions:

U : TyΓ El : TmΓU → TyΓ

U :≡ KU′ Ela :≡ El′ a
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Identity

Assuming t, u : TmΓA, extensional identity Id t u is defined as component-wise equality:

ConId tu Γ :≡ tΓ ≡ uΓ

SubId tu Γ∆σ :≡ tσ ≡ uσ

TyId tu ΓA :≡ tA ≡ uA

TmId tu ΓA t :≡ t t ≡ u t

All other structure follows from structure-preservation of t and u. For the simplest example,
•Id tu : t • ≡ u • holds because t and u both preserve •. The rule (Id t u)[σ] ≡ Id (t[σ]) (u[σ])
is straightforward to check: we only have to look at the underlying sets, where e.g. both sides
have ConΓ ≡ (t (σ Γ) ≡ u (σ Γ)). It is also evident that TmΓ(Id t u) is equivalent to t ≡ u,
that is, we have reflexivity and equality reflection.

Internal product type

For a : TmΓU and B : Ty (Γ ▷ Ela), we aim to define ΠaB : TyΓ. This is a dependent
product of displayed flcwfs, indexed over a discrete domain. Discreteness is critical: since
morphisms in Ela are proof-irrelevant and invertible (because they are equations), we avoid
the variance issues that preclude general Π-types in the cwf of categories [Joh02, Secion A1.5].

The direct definition would be to define underlying sets as products, indexed over corre-
sponding components in Ela:

ConΠaB Γ :≡ (γ : aΓ) → ConB (Γ, γ)

SubΠaB Γ∆σ :≡ {γ : aΓ}{δ : a∆}(σ : SubEla γ δ σ) → SubB (Γ γ) (∆ δ) (σ, σ)

TyΠaB ΓA :≡ {γ : aΓ}(α : aAγ) → TyB (Γ γ) (A, α)

TmΠaB ΓA t :≡ {γ : aΓ}{α : aAγ}(t : TmEla γ δ t) → TmB (Γ γ) (Aα) (t, t)

But just like in Definitions 4 and 6, we can contract the Sub and Tm definitions, since
SubEla γ δ σ ≡ (aσ γ ≡ δ) and TmEla γ α t ≡ (a t γ ≡ α).

ConΠaB Γ :≡ (γ : aΓ) → ConB (Γ, γ)

SubΠaB Γ∆σ :≡ (γ : aΓ) → SubB (Γ γ) (∆ (aσ γ)) (σ, refl)

TyΠaB ΓA :≡ {γ : aΓ}(α : aAγ) → TyB (Γ γ) (A, α)

TmΠaB ΓA t :≡ (γ : aΓ) → TmB (Γ γ) (A (a t γ)) (t, refl)

With the contracted definition, Sub and Tm are only indexed over displayed objects and types,
but not over displayed morphisms or terms anymore. So it is apparent that we cannot have
issues with indexing variance. All structure in ΠaB is pointwise inherited from B. We list
some examples below for definitions.

•ΠaB γ :≡ •B

(Γ ▷ΠaB A) (γ, α) :≡ (Γ γ ▷B Aα)

idΠaB γ :≡ idB

(σ ◦ΠaB δ) γ :≡ σ γ ◦B δ γ
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A[σ]ΠaB {γ}α :≡ (Aα)[σ γ]B

KΠaB ∆α :≡ KB (∆α)

For the specifying isomorphism (app, lam) : TmΓ(ΠaB) ≃ Tm (Γ ▷Ela)B, note that the
difference in presentation is exactly component-wise currying and uncurrying. For instance, in
t : TmΓ(ΠaB), the underlying action on contexts has the following type:

(Γ : ConΓ)(γ : aΓ) → ConB (Γ, γ)

While in t : Tm (Γ ▷ Ela)B, we have

((Γ, γ) : (Γ : ConΓ)× aΓ) → ConB (Γ, γ)

So app and lam are defined as component-wise uncurrying and currying respectively. Naturality
of Π and app again follows from the fact that flcwf morphisms strictly preserve all structure,
and substitution is component-wise function composition.

External product type

For Ix : Ty0 and B : Tm0 Ix → TyΓ, we define ΠExt Ix B : TyΓ as the Ix -indexed product of
a family of displayed flcwfs.

ConΠExt Ix B Γ :≡ (i : Tm0 Ix ) → ConB i Γ

SubΠExt Ix B Γ∆σ :≡ (i : Tm0 Ix ) → SubB i (Γ i) (∆ i)σ

TyΠExt Ix B ΓA :≡ (i : Tm0 Ix ) → TyB i (Γ i)A

TmΠExt Ix B ΓA t :≡ (i : Tm0 Ix ) → TmB i (Γ i) (A i) t

All structure is defined in the evident pointwise way. appExt and lamExt are defined by
component-wise flipping of function arguments. This concludes the definition of the M model.

Example 16. We look at the computation of a semantic flcwf, in the simple case of the flcwf
of Nat-algebras. Recall that the signature is

NatSig :≡ • ▷ (N : U) ▷ (zero : ElN) ▷ (suc : N ⇒ ElN)

We evaluate NatSig in M entry-wise. We start from •, the terminal flcwf where algebras are
elements of ⊤. Then, moving left to right, we take the total flcwf of each type in the signature.
From U, we get the product of ⊤ and the flcwf of sets, which is equivalent to simply the flcwf
of sets. Second, we extend this with the semantic ElN , which is the displayed flcwf of points
of sets, to get the flcwf of pointed sets. Finally, by extension with N ⇒ ElN , we get the flcwf
of Nat-algebras.

Let us also look at some components of the resulting flcwf. Algebras, displayed algebras,
morphisms and sections have been already discussed before, so we look at other components.
We omit the leading ⊤ components everywhere in the following.

• is the terminal Nat-algebra, i.e. • ≡ (⊤, tt, λ . tt). Context extension – ▷ – : (Γ : Con) →
TyΓ → Con constructs the total algebra of a displayed algebra.

(N, z, s) ▷ (ND, zD, sD) ≡
(((n : N)×ND n), (z, zD), (λ (n, nD). (s n, sD nnD)))



58 4.2. SEMANTICS

p and q respectively project first and second components from a total algebra. For t, u :
Tm (N, z, s) (ND, zD, sD), Id t u is the displayed Nat-algebra which expresses equality of Nat-
algebra sections. Let us review the definition of sections:

Tm (N, z, s) (ND, zD, sD) ≡
(NS : (n : N) → ND n)

× (zS : NS z ≡ zD)

× (sS : (n : N) → NS (s n) ≡ sD n (NS n))

We have that

Id (NS
0 , z

S
0 , s

S
0 ) (N

S
1 , z

S
1 , s

S
1 ) ≡

((λn.NS
0 n ≡ NS

1 n), ( : NS
0 z ≡ NS

1 z), (λn. ( : NS
0 (s n) ≡ NS

1 (s n))))

The underscores denote omitted equality proofs; they follow from the zS and sS components.
It should be apparent that TmΓ (Id t u) is isomorphic to t ≡ u; this follows from function
extensionality and decomposition of equalities of pairs. Thus, equality reflection holds in the
flcwf of Nat-algebras. Note that we do not need to use equality reflection for – ≡ – to show
this; it is simply a reshuffling of components along funext.

K : Con → {∆ : Con} → Ty∆ yields a non-dependent displayed algebra:

K (N, z, s) {N ′, z′, s′} ≡ (λ .N, z, λ n . s n)

With this definition, we indeed have that TmΓ (K∆) ≡ SubΓ∆.
Σ : (A : TyΓ) → Ty (Γ ▷ A) → TyΓ is the evident parameterized variant of – ▷ –:

Σ (ND, zD, sD) (ND′
, zD

′
, sD

′
) :≡

((λn. (nD : ND n)×ND′
(n, nD)),

(zD, zD
′
),

(λn (nD, nD′
). (sD nnD, sD

′
(n, sD nnD)nD′

)))

4.2.6 Recovering AMDS Interpretations

We have defined the M model in a “bundled” fashion, but sometimes we will also need to refer
to pieces of it. In Figure 4.1 we have a summary of the model. On the left, the rows are labeled
with components of ToS, while on the top we have components of flcwf. The individual rows
can be further unfolded, as each of them contains multiple components. Likewise the Σ, Id and
K columns can be unfolded. We get the whole model by filling every cell of the unfolded table
with a definition. Of course, many of these cells are equations between equations, hence trivial
by UIP.

This setup is very regular and convenient because we can extract a displayed ToS model
from any column, which may depend on columns to the left. The whole model is the total
model of all columns. For example, the Con column does not depend on anything, so it is a
plain model. The Ty column is displayed over Con. The Tm column depends on Con and Ty,
but it does not depend on Sub.
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cwf fl
Con Sub Ty Tm ... Σ Id K

cwf

–A –M –D –S

U
Id
Π

ΠExt

Figure 4.1: The flcwf model of the theory of signatures

See also Appendix A for a tabular specification of the AMDS interpretations.
From each displayed model, we get an eliminator, i.e. a family of interpretation functions.

We note –A, –M , –D and –S in the table, but in principle we could refer to the eliminators of
other columns as well. The interpretation functions can be in multiple ways.

One extreme choice is to separately take the eliminator for each column, and refer to pre-
vious eliminators in each displayed model; e.g. referring to the eliminator functions –A in the
definition of the Ty column. Another extreme choice is to take the recursor for the entire
model, then project out components from the result.E.g. we get –A by projecting out the first
components of the interpretations of ToS objects.

Generally, we can bundle columns as we like. However, all variations coincide because of
the initiality of ToS syntax.

4.2.7 Left Adjoints of Substitutions

In this section we show that if all signatures have initial algebras, then the semantic interpre-
tation of each ν : SubΩ∆ has a left adjoint functor. We have the following setup.

• We write J–K for the interpretation into the flcwf model M.

• We close types in ToS under ⊤ and Σ, that is, we have ⊤ : TyΓ and Σ : (A : TyΓ) →
Ty (Γ ▷ A) → TyΓ. The flcwf semantics can be immediately extended with these type
formers: since flcwfs are given by an FQII signature, they form an flcwf themselves and
support ⊤ (as K •) and Σ. In the following we will need to talk about signatures depending
on signatures, and ⊤ and Σ are more convenient for this purpose than telescopes.

Given ν : SubΩ∆ in the ToS syntax, we get JνK : JΩK → J∆K as a functor between JΩK and
J∆K categories of algebras. We seek to construct some L : J∆K → JΩK such that L ⊣ JνK.

The basic idea is the following: the existence of left adjoints is equivalently characterized by
having an initial object in the comma category δ/JνK for each δ : ∆A [ML98, Section IV]. Thus,
it is enough to find some signature Ψ such that JΨK is equivalent to δ/JνK, and by assumption
we get an initial object. The objects of δ/JνK consist of the following:

(ω : ΩA)× (η : ∆M δ (νA ω))

Of the two components, ω : ΩA can be clearly represented as the Ω signature. The η component
is a bit more complicated. We need to represent a ∆-morphism, but whose domain is an external
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algebra, and whose codomain is an algebra internal to the ToS syntax. In other words, we need
a notion of “heterogeneous” morphism, where the domain lives in the usual flcwf semantics,
but the codomain lives in the syntactic slice model ToS/Ω.

Definition 45 (Heterogeneous morphisms). Fixing Ω : Con, we define –HM by induction
on the ToS.

–HM : (Γ : Con) → ΓA → SubΩΓ → TyΩ

–HM : (σ : SubΓ∆) → TmΩ (ΓHM γ0 γ1) → TmΩ (∆HM (σA γ0) (σ ◦ γ1))

–HM : (A : TyΓ) → AA γ0 → TmΩ (A[γ1]) → TmΩ (ΓHM γ0 γ1) → TyΩ

–HM : (t : TmΓA)(γHM : TmΩ (ΓHM γ0 γ1)) → TmΩ (AHM (tA γ0) (t[γ1]) γ
HM)

The interpretation on contexts sums up the difference between the “homogeneous” –M and
the current one. In the homogeneous interpretation, we have ΓM : ΓA → ΓA → Set, in the
heterogeneous one the codomain of the relation is syntactic, and the return type as well. We
use ⊤ and Σ in ToS to interpret contexts:

•HM γ0 γ1 :≡ ⊤
(Γ ▷ A)HM (γ0, α0) (γ1 α1) :≡ Σ (γHM : ΓHM γ0 γ1) (A

HM α0 α1 γ
HM)

We use a nameful notation for Σ-binding on the right hand side. In the cwf interpretation we
similarly reuse ToS type formers in a mechanical way, following the definitions of the homoge-
neous –HM .
U is interpreted using external function types:

UHM : (a0 : Ty0)(a1 : TmΩU) → TmΩ (ΓHM γ0 γ1) → TyΩ

UHM a0 a1 γ
HM :≡ a0 →Ext El a1

Note that this does not work if a0 is syntactic and a1 is external, as we have no function type
in ToS with external codomain; so –HM would not work with an external second parameter.
ElHM uses the Id type in ToS:

(El a)HM : aA γ0 → TmΩ (El (a[γ1])) → TyΩ

(El a)HM α0 α1 γ
HM :≡ Id (aHM γHM α0)α1

In Π we give the usual pointwise definition, using the external product type:

(Π aB)HM t0 t1 γ
HM :≡ (α : aA γ0) →Ext BHM (t0 α) (t1 (a

HM γHM α)) (γHM , refl)

In Id, we reuse the Id in ToS:

(Id t u)HM : tA γ0 ≡ uA γ0 → TmΩ (Id (t[γ1]) (u[γ1])) → TmΩ (ΓHM γ0 γ1) → TyΩ

(Id t u)HM p0 p1 γ
HM :≡ Id (tHM γHM) (uHM γHM)

External products are again external products.

(ΠExt IxB)HM t0 t1 γ
HM :≡ (i : Ix) →Ext (B i)HM (t0 i) (t1 i) γ

HM
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The newly added ⊤ and Σ type formers are evident:

⊤HM tt tt γM :≡ ⊤
(ΣAB)HM (α0, β0) (α1, β1) :≡

Σ (αHM : AHM α0 α1 γ
M) (BHM β0 β1 (γ

HM , αHM))

Definition 46 (Representing signature). For ν : SubΩ∆ and δ : ∆A, we define the signa-
ture which represents δ/JνK:

Sigδ/JνK :≡ Ω ▷∆HM δ ν

Now, we have that

(Sigδ/JνK)
A ≡ (ω : ΩA)× ((∆HM δ ν)A ω)

(Sigδ/JνK)
M (ω0, η0) (ω1, η1) ≡ (ωM : ΩM ω0 ω1)× ((∆HM δ ν)M η0 η1 ω

M)

It remains to show that JSigδ/JνKK is indeed equivalent to δ/JνK. It suffices to show that sets of
objects and morphisms are isomorphic. We need the following:

A≃ : (∆HM δ ν)A ω ≃ ∆M δ (νA ω)

M≃ : (∆HM δ ν)M η0 η1 ω
M ≃ (νM ωM ◦ A≃ η0 ≡ A≃ η1)

These can be shown by induction on ToS again; we omit describing this here.

Theorem 4. If every FQII signature has an initial algebra, then for every ν : SubΩ∆, there
exists a left adjoint of JνK : JΩK → J∆K.

Proof. For each δ : ∆A, the comma category δ/JνK can be specified with Sigδ/JνK by Definition

46, hence it has an initial object. The left adjoint L : J∆K → JΩK sends each δ : ∆A to the
ω : ΩA component of the initial algebra of Sigδ/JνK.

4.3 Discussion of Semantics

4.3.1 Flcwfs For Free

We give a quick summary for using the semantics of FQII signatures. As input we pick a) a
signature Γ b) a cwf C with Σ, ⊤ and extensional Id. Then, we interpret the signature in M,
thereby getting an flcwf in 2LTT. Then, we interpret that in presheaves over C, and we get the
flcwf whose objects are internal Γ-algebras in C.

One use case is in building models of certain type theories. Usually, this starts with con-
structing the base cwf. But if the objects can be specified using an FQII signature, we get
an flcwf for free. In some cases, we get exactly what is needed. For example, the flcwf of
presheaves can be used as it is in the presheaf models of type theories.

In other cases, the flcwf that we get has to be extended in some ways. This often happens
if the objects in the model have an internal notion of “equivalence” which has to be respected
by types.

• In the setoid model, objects are setoids and types are displayed setoids with additional
fibrancy structure [ABKT19].
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• The groupoid model [HS96] is analogous; again types are displayed groupoids with fi-
brancy structure.

• Likewise, in the cubical set model [BCH14], types are displayed presheaves together with
fibrancy structure (Kan composition).

In all these cases, the semantic objects have FQII signatures. We can interpret their flwcfs
in Set and add fibrancy conditions. The cubical set model is presented exactly in this way
in [BCH14], using displayed algebras. The groupoid model in [HS96] instead presents types as
Γ → Gpd functors, i.e. uses an indexed style instead of the displayed style.

In the indexed-style groupoid model, we get strictly functorial type substitution, just like in
the displayed style. However, the displayed style appears to be a more general way to get strict
substitution, as it works for every FQII theory. Again, although finitely complete categories can
be always strictified to cwfs, if we ever need to perform calculations with the internal definitions
of a model, the displayed style is much more direct.

4.3.2 Variations of the Semantics

In Section 4.1, we required that the inner theory has Σ, ⊤ and extensional Id, and then used
the assumed type formers in the definition of U. Hence, when we interpret the semantic flcwf
of a signature in the presheaf model, we again need to assume these type formers in the base
cwf C.

However, we can drop Id from the requirements on the inner theory, and likewise drop the
identity type from flcwfs, and the model still works. In this case we have a somewhat more
general semantics. In particular, like in Section 3.5.2, we can interpret signatures in finite
product categories because ⊤ and Σ can be derived from finite products in the constructed
“simply typed” cwf. On the other hand, we get less out of the semantics. For instance, we
cannot show equivalence of initiality and induction without Id.

If we want to trim down the assumptions on the inner theory to the minimum, we can make
do with simply an inner cwf with no type formers at all. This implies that for each signature
we can build a category of algebras, plus extra structure which does not require Σ or ⊤ in the
U definition. So we may have displayed algebras, sections, and also functorial substitution for
these, but we do not have terminal algebras and total algebras.

We could also add more type formers to the semantics. For instance, we may add an external
product ΠExt (specified the same way as in signatures). Extending flcwfs with ΠExt requires
Π-types in the inner theory of 2LTT, hence in C as well. The reason is that indexed products
of algebras require functions in the underlying sorts. More concretely, in the definition of U we
have to interpret

ΠExt
U : (Ix : Ty0) → (Tm0 Ix → TyU Γ) → TyU Γ

hence
ΠExt

U : (Ix : Ty0) → (Tm0 Ix → Tm0 Γ → Ty0) → Tm0 Γ → Ty0

This works if we can return an inner Π type in the definition:

ΠExt
U Ix B γ :≡ (i : Ix ) → B i γ

In this case, the flcwf semantics can be completed. We omit checking the details here. If we
have both extensional Id and ΠExt, that yields small limits of algebras. If we want to have
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“simply typed” semantics for this configuration, it is enough to assume a cartesian closed base
category C.

4.3.3 Substitutions

Interpreting signatures is not the only potentially useful thing that we get out of the semantics.
Each σ : SubΓ∆ can be viewed as a free interpretation of the ∆ theory in Γ, and we get a
strict flcwf morphism from the semantics.

Ornaments

One use case of Sub is to specify ornaments [Dag17], i.e. ways to decorate structures with
additional information, or dually, to erase parts of some structure. Ornaments differ from the
usual forgetful maps because they forget structure in negative position, i.e. in assumptions of
construction rules.

Example 17. We assume A : Ty0. We define the substitution which forgets elements of A-lists.

σ : Sub (• ▷ (Nat : U) ▷ (zero : ElNat) ▷ (suc : Nat))

(• ▷ (List : U) ▷ (nil : ElList) ▷ (cons : A →Ext List → List))

The map goes from numbers to lists because of the “contravariant” forgetfulness. We define σ
by listing its component definitions.

List :≡ Nat

nil :≡ zero

cons :≡ λext . λ n. sucn

Example 18. We assume Nat0 : Ty0 with zero0 and suc0, and define σ : SubNatSig FinSig,
where FinSig is as follows:

Fin : Nat0 →Ext U

zero : (n : Nat0) →Ext El (Fin (suc0 n))

suc : (n : Nat0) →Ext Finn → El (Fin (suc0 n))

σ is defined as

Fin :≡ λext .Nat

zero :≡ λext . zero

suc :≡ λext . λ n. sucn

For a specific programming use case, if we have any recursive function defined on an “erased”
type, we can convert that to a recursive function which acts on an “ornamented” type. For
example, if we have some Nat-algebra Γ, the recursor yields a morphism from the initial algebra
to Γ. We can map Γ to a list-algebra or a Fin-algebra, and then we can also use recursors for lists
or Fin. Equivalently, we can map the unique morphism to Γ directly to a morphism between
ornamented algebras.
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Note though that a number of features and concepts from prior work on ornaments are not
yet reproduced. For example, we do not yet have an analogue of algebraic ornaments, which
would allow us produce an ornamented signature as an output of a generic operation, instead
of assuming it to begin with. Exploring ornaments with QII signatures could be part of future
work.

Model constructions

In a broader context, ToS provides a synthetic language for specifying model constructions.

Example 19. For a simple example, we might want to show that constant families are equiv-
alent to democracy in cwfs. Democracy means that for each Γ : Con there is a Γ : Ty • such
that Γ ≃ (• ▷ Γ) [CCD17, Section 3.1].

We can define a σ : Sub cwfK cwfdem which interprets democracy using constant families.
It is the identity morphism on the cwf parts and interprets democracy as Γ :≡ KΓ. The
isomorphism Γ ≃ (• ▷ KΓ) follows from the specification of K. We can also define a morphism
σ−1 : Sub cwfK cwfdem, which interprets K∆ as ∆[ϵ]. It is easy to check that σ−1 is indeed the
inverse of σ. Thus we get an isomorphism of flcwfs of models from the ToS semantics.

This construction is very simple, and would not be difficult to check without the ToS
semantics. But it is generally not obvious that a certain mapping from models to models
extends to an flcwf morphism, so it may be helpful to work inside ToS.

Example 20. There is a simple way to show that if a type theory does not support η for Π,
then function extensionality is not provable in the theory [BPT17].1 Assume some type theory
with Σ, Π, Id and Bool, and abbreviate its signature as TT. We define a σ : SubTTTT which
has identity action everywhere except on Π. There, we have

Π :≡ λAB.ΠAB × Bool

app :≡ λ t. app (proj1 t)

lam :≡ λ t. (lam t, true)

In short, we tag functions with a Bool value. This equips Π with “intensional” information,
contradicting extensionality. If we have two functions which are pointwise equal, that only
specifies that the function parts are equal, but does not say anything about the Bool tags.
Hence, if we take any model of TT, we get a new model by the semantic action of σ, where
function extensionality is false. Note though that the η rule also fails in the new model, so we
had to drop η from the TT signature as well.

In [BPT17], this construction is presented for the special case where the starting model is
initial. While it is easy to generalize to arbitrary starting models, it is less obvious to extend
the construction to a functor of categories of models - which we do get for free here.

Example 21. The gluing construction by Kaposi, Huber and Sattler [KHS19] takes as input
two models of some type theory together with a weak cwf-morphism between them, and pro-
duces as output a displayed model over the first model. Depending on the choice of the inputs,
the gluing construction can yield parametricity translations and canonicity proofs as well.

1It is also possible to show unprovability of function extensionality assuming η for functions, but in signifi-
cantly more complicated ways. To the author’s best knowledge, the set-based polynomial model is the easiest
solution [VG15].
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Let us use TT : Ty • for the signature of the type theory, given as an iterated large Σ-type.
Then, the notion of weak cwf-morphism is also expressible in ToS as morph : Ty (• ▷ (M0 :
TT) ▷ (M1 : TT)), and the notion of displayed model as well, as TTD : Ty (• ▷ (M : TT)).2 Thus,
we can give a “type” for the gluing construction, as follows:

Tm (• ▷ (M0 : TT) ▷ (M1 : TT) ▷ (f : morph[M0 7→ M0, M1 7→ M1]))

(TTD[M 7→ M0])

Moreover, the gluing construction itself can be given as an inhabitant of the above type. This
construction works in the ToS because it only reuses structure from M1 to define the displayed
model over M0.

Limitations. In the finitary ToS syntax, when defining substitutions we can only ever use
assumed type constructors. If we assume Σ and ⊤ type formers in the domain signature of a
construction, we might be able to work around the lack of Σ and ⊤ in U in the ToS itself. This
does not always work though; for example, take the substitution with type SubMonoidSig CatSig
which maps a monoid to a single-object category. AssumingM : U is the carrier set inMonoidSig,
we would need to have the following:

Obj :≡ ⊤
Hom :≡ λ .M

But we have Obj : U in CatSig, so we would need to have ⊤ : U. In Chapter 5, we present a
more expressive ToS which does include ⊤ : U.

4.3.4 Using Signatures in Implementations

We may ask whether the current ToS is suitable for implementations of type theories. The
answer is not wholly straightforward.

Note that we must choose a concrete surface syntax in an implementation, and there are
many design choices. The surface syntax would be almost certainly nameful, and may or
may not leave El-s implicit, since they are not difficult to insert by bidirectional elaboration.
Besides the elaboration of surface syntax, we should have at least the computation of induction
principles.

Equality reflection in the ToS is a complication. If we have “silent” transports along equality
reflection, that makes elaboration of surface signatures undecidable. We might make transports
explicit, which restores decidable checking, but that requires the ToS to be deeply embedded
in some ambient theory.3

Alternatively, we may just drop equality reflection from the ToS, and use transport and UIP
as primitives. This recovers decidable surface syntax, but now we have to cover transport and
UIP in the semantics, to be able to compute induction principles. This is not too difficult; in
Chapter 6 we do the same for path induction J in the ToS. In that case, we even have a Haskell
implementation of signature elaboration and computation of induction principles [Kov20].

2We will be also able to automatically derive TTD from TT, in Section 5.4.
3Equality reflection is simply an equality constructor in the embedded syntax, and has no bearing on decid-

ability of type checking in the metalanguage.
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Hence, handling signatures and computing induction principles is not difficult. Instead, the
real gap between our ToS and practical implementations is that we need to have computationally
adequate treatment of quotients. In plain Martin-Löf type theories, computation gets stuck on
quotients. We need to use more recent systems, such as a cubical type theories [VMA21,SAG20],
or some flavor of observational [AMS07] or setoid [ABKT19] type theory. In each of these
systems, the signatures and their semantics would need to be adapted, and we would need to
work out additional details. For example, we would need to produce extra computation rules
which explain the behavior of coercion or transport on QIIT constructors.

4.4 Term Algebras

In this section we proceed with the construction of term algebras for FQII signatures, together
with their recursors and eliminators. We make two significant modifications to the setup.

First, we drop the outer theory, and work exclusively inside an extensional type the-
ory. The reason is the following. The main purpose of 2LTT is to generalize the semantics
of signatures. In the previous section, we presented semantics for signatures, where algebras
are internal to arbitrary cwfs with Σ, ⊤ and extensional Id. This is quite general; in particu-
lar we can interpret signatures in any finitely complete category. We also described dropping
assumptions in Section 4.3.2, thereby getting semantics in yet more general settings.

In contrast, we make a lot more assumptions in the inner theory when we develop initial
term algebras; we essentially have to replicate the outer features verbatim. Thus, we gain
nothing by using 2LTT, compared to working in a model of an extensional TT.

What about the term model construction for simple signatures in Section 3.5.6, why did we
use 2LTT there? In that case, the inner theory was intensional, i.e. lacked equality reflection.
So there remained an interesting distinction between the inner and outer layer, which allowed
us to prove definitional β-rules for recursors. In contrast, here we assume inner equality reflec-
tion, so we have no distinction between propositional and definitional inner equality.

Second, we make universe levels explicit in the semantics and constructions. So far, we
have been consistently ignoring universe levels. Now, size questions are less obvious, and quite
relevant to a) ensuring the consistency of assumed induction principles b) laying groundwork
for bootstrapped semantics and self-describing signatures in Section 4.5.

Universe levels are a fairly bureaucratic detail in type theories. In the following we try to be
as informal as possible, while still representing the essential sizing aspects. In the following, we
describe the new universe setup, and adapt the previously described signatures and semantics
to it.

4.4.1 Universes & Metatheory

We have N-indexed Russell-style Seti universes, which are cumulative, meaning that any type
in Seti is also an element of Seti+1. We use a surface syntax which is similar to Coq, where
cumulativity is implicit. This contrasts the formal (“algebraic”) specification of cumulativity
[Ste19,Kov22a], which involves rather heavy explicit annotation.
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i ≤ j

Γ ⊢ Seti ≤ Setj

Γ, x : A ⊢ B ≤ B′

Γ ⊢ (x : A) → B ≤ (x : A) → B′
Γ ⊢ A ≤ A′ Γ, x : A ⊢ B ≤ B′

Γ ⊢ (x : A)×B ≤ (x : A′)×B′

Γ ⊢ A ≤ A

Γ ⊢ A ≤ B Γ ⊢ B ≤ C

Γ ⊢ A ≤ C

Γ ⊢ A ≤ A′ Γ ⊢ t : A

Γ ⊢ t : A′

Figure 4.2: Rules for cumulative subtyping

Also following Coq, we have implicit cumulative subtyping [TS18]. In our case, this means
that cumulativity distributes through basic type formers. We have a –≤ – subtyping relation
on types, specified in Figure 4.2. This is subtyping for surface syntax ; it is expected that surface
syntax can be elaborated to coercions in a formal syntax with algebraic cumulativity.

Note that we have an invariant rule for function domain types. This is to match Coq
and [TS18], and also because we will not need a contravariant rule in any case.

We assume that Π and Σ types return in least upper bounds of levels. For instance, assuming
A : Seti and B : A → Setj, we have (x : A) → B : Seti⊔ j.

4.4.2 Signatures & Semantics

First, we parameterize the notion of ToS-model with levels.

Definition 47. For levels i and j, ToSi,j : Seti+1⊔ j+1 is the type of ToS models, defined as
before, but where Con, Sub, Ty and Tm all return in Seti, and ΠExt abstracts over Setj.

We have that ToSi,j ≤ ToSi+1,j. This follows from the rules in Figure 4.2. All underlying
sets return in Seti, which can be bumped to Seti+1. Th j level does not change, which is as
expected, since Setj appears in a negative position in the type of ΠExt, and has to be invariant.

Assumption. We assume that for all j, there exists synj : ToSj+1,j which supports induc-
tion. Note the level bump in the first index; this is to avoid inconsistency from type-in-type:

Ty : Con → Setj+1

ΠExt : (A : Setj) → (A → TyΓ) → TyΓ

With Ty returning in Setj, Π
Ext would “contain” a Setj, but at the same time return in a type

in Setj, and by induction we would be able to derive a Russell-like paradox. Likewise, all other
underlying sets must be bumped to Setj+1 because of their mutual nature: contexts, terms and
substitutions all “contain” types through some of their constructors.

Definition 48 (Signatures). We define Sigj : Setj+1 as the type of signatures where Π
Ext may

abstract over Setj, so we have Sigj :≡ Consynj .

Definition 49 (Flwcf model). For levels i and j, we have Mi,j : ToS(i+1⊔ j)+1,j as the model
where contexts are flcwfs, and objects in the flcwf are algebras. The model is defined in
essentially the same way as in Section 4.2. The algebras have underlying sets in Seti and
(semantic) external products are indexed over types in Setj. Hence, every algebra in Mi,j is in
Seti+1⊔ j.
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Example 22. We may define NatSig as an element of Sig0. Then, by interpreting the signature
in Mi,0, we get NatSigA ≡ (N : Seti)× (N → N)×N , hence NatSigA : Seti+1⊔ 0.

Notation 18. For a signature Γ : Sigj and level i, we may write ΓA
i for the type of Γ-algebras

with underlying sets in Seti, which is computed by interpreting Γ in Mi,j. We may use similar
notation for –M , –D and –S.

Cumulativity of algebras. In the following, we shall assume that for Γ : Sigj and i ≤ i′, we
have ΓA

i ≤ ΓA
i′ . For any concrete signature Γ, this is clearly the case, but –≤ – is not subject

to propositional reasoning, so we cannot prove this by internal induction on signatures. We
can prove by induction on signatures that there exists a lifting, a LiftΓA

i : Seti+1⊔ j which is
isomorphic to ΓA

i . Instead, we take liberties, and work as if we had actual cumulative subtyping.
This seems acceptable, since by using implicit cumulativity, we are already taking the same
liberty everywhere, by omitting formal lifts and isomorphisms.

4.4.3 Term Algebra Construction

We fix Ω : Sigj for some j level. We define –T by induction on synj. In the following we write
–A for –A

j+1, i.e. the algebra interpretation where underlying sets are in Setj+1. Formally, we
need a displayed model over synj, but we instead present the resulting eliminator, which is
perhaps easier to read. The underlying functions have the following types.

–T : (Γ : Con) (ν : SubΩΓ) → ΓA

–T : (σ : SubΓ∆)(ν : SubΩΓ) → ∆T (σ ◦ ν) ≡ σA (ΓT ν)

–T : (A : TyΓ) (ν : SubΩΓ) → TmΩ (A[ν]) → AA (ΓT ν)

–T : (t : TmΓA) (ν : SubΩΓ) → AT ν (t[ν]) ≡ tA (ΓT ν)

We review the idea of term algebras. In any model of ToS, we might think of a Sub •Γ as a
Γ-algebra internal to the model. In the –T interpretation we can assume Ω ≡ •; this means that
from any internal Γ-algebra we can extract an “external” Γ-algebra. This is possible because
every sort a : TmΓU in ToS induces an external type of terms as TmΓ (El a).

We can view the generalization from • to arbitrary Ω as switching from working in the
syntactic model synj, to working in the slice model synj/Ω, where contexts are given as Ω
extended with zero or more entries. And in synj/Ω, we have an Ω-algebra quite trivially, by
taking the identity morphism id : SubΩΩ.4 Hence, term algebras arise by first taking the trivial
internal algebra id in synj/Ω, then converting it to an external algebra as ΩT id : ΩA.

Remark. We could have presented –T and slice models separately. We instead chose to
merge them into the current –T , since we do not use slice models elsewhere, and we can skip
their definition this way. Slice models would require the specification of telescopes, used to
extend the base context, but this entails a fair amount of bureaucratic detail.

We explain the –T specification in the following. Term and substitution equations are given
by UIP. We omit cases for substitutions and terms.

For contexts, we simply recurse on the entries. We use a pattern matching notation for
SubΩ (Γ▷A), since any ν with this type is uniquely determined by its first and second projections

4Writing – synj/Ω for the interpretation of syntax in the slice model, Subsynj/Ω • (Ωsynj/Ω) is isomorphic to,
but not strictly the same as Subsynj ΩΩ.
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p ◦ ν and q[ν].

•T ν :≡ tt

(Γ ▷ A)T (ν, t) :≡ (ΓT ν, AT ν t)

Type substitution with σ : SubΓ∆ is as follows. This is well-typed by σT ν : ∆T (σ ◦ ν) ≡
σA (ΓT ν).

(A[σ])T ν t :≡ AT (σ ◦ ν) t

Universe

For the universe, note that UA
j+1 γ ≡ Setj+1. As we mentioned before, this is the key part

when we map from internal sorts to external sets. The levels line up, since in synj we have Tm
returning in Setj+1.

UT : (ν : SubΩΓ) → TmΩU → Setj+1

UT ν a :≡ TmΩ (El a)

For El, we have to define

(El a)T : (ν : SubΩΓ) → TmΩ (El (a[ν])) → aA (ΓT ν)

but since aT ν : TmΩ (El (a[ν])) ≡ aA (ΓT ν), we have

(El a)T : (ν : SubΩΓ) → TmΩ (El (a[ν])) → TmΩ (El (a[ν]))

(El a)T ν t :≡ t

The aT ν equation is worth noting. If we have ν ≡ id, the equation is aT id : TmΩ (El a) ≡
aA (ΩT id), that is, if we evaluate a signature sort in the term model ΩT id, we get a type of
inner terms.

Identity

We have to show that provably equal terms are evaluated to the same value in the term model.

(Id t u)T : (ν : SubΩΓ) → TmΩ (Id (t[ν]) (u[ν])) → tA (ΓT ν) ≡ uA (ΓT ν)

We know by equality reflection that t[ν] ≡ u[ν], and we also get

tT ν : AT ν (t[ν]) ≡ tA (ΓT ν)

uT ν : AT ν (u[ν]) ≡ uA (ΓT ν)

from which the target equality follows. Equality reflection for inner Id is crucial here. It is the
reason why –T works for quotient signatures ; equality reflection is in fact the “quotient” rule
which identifies provably equal terms. For a simple example, terms with type

Tm (• ▷ (I : U) ▷ (left : El I) ▷ (right : El I) ▷ (seg : Id l r)) (El I)

are quotiented by seg , which is a provable equation in the context.
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Internal product type

Here we have to convert an inner term with Π type to an outer function.

(Π aB)T : (ν : SubΩΓ) → TmΩ (Π (a[ν]) (B[ν ◦ p, q]))
→ (α : aA (ΓT ν)) → BA (ΓT ν, α)

(Π aB)T ν t :≡ λα.BT (ν, α) (t α)

This is well-typed by aT ν : TmΩ (El (a[ν])) ≡ aA (ΓT ν), which allows us to consider α to be
an inner term in λα.BT (ν, α) (t α).

External product type

In this case we just recurse through the specifying isomorphism:

(ΠExtAB)T : (ν : SubΩΓ) → TmΩ (ΠExtA (λα. (B α)[ν]))

→ (α : A) → (B α)A (ΓT ν)

(ΠExtAB)T ν t :≡ λα. (B α)T (ν, α)

This concludes the definition of –T .

Definition 50. For an Ω : Consynj signature, the corresponding term algebra is given as

ΩT id : ΩA
j+1.

Remark. If we start with a signature in synj, then the underlying sets in the term algebra
are all in Setj+1. Hence, the term algebra for NatSig : Sig0 has an underlying set in Set1. This
is perhaps inconvenient, since normally we would have natural numbers in Set0. However, we
argue that this is no issue because we are free to specify Set0 as we like. In particular, we can
say that Set0 is an empty universe, closed under no type formers at all (or explicitly isomorphic
to ⊥) in which case Sig0 stands for closed signatures (since ΠExt cannot be constructed), and
it is expected that any closed inductive type would be placed in Set1. Alternatively, we could
name the bottom-most universe Setempty or Set−1, and start counting non-empty universes from
Set0.

4.4.4 Recursor Construction

We continue with the construction of recursors. This is not necessary, strictly speaking, since
recursion is derivable from elimination, so it would suffice to only construct eliminators. We
still present recursors, for the sake of matching the presentation in Chapter 2.

The goal is to construct a morphism from a term algebra to any other ω : ΩA algebra.
However, we have to handle universe levels as well. We want to be able to eliminate from the
term algebra, which was constructed at the lowest possible level, to any other universe. So far
we have not introduced a “heterogeneous” notion of morphism, between algebras at different
levels. We get this from cumulativity.

• We assume Ω : Sigj, for which we already have the term algebra ΩT id : ΩA
j+1.

• We assume some k ≥ j + 1, and an ω : ΩA
k , the target of recursion.
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• We implicitly lift ΩT id from level j + 1 to level k by cumulativity, and construct a
“homogeneous” morphism from the lifted term algebra to ω.

This allows us to eliminate from ΩT id to any level. If we want to eliminate to k ≥ j + 1, we
can lift the term algebra, and use a constructed recursor. On the other hand, if we want to
eliminate to k < j + 1, we can instead lift the target ω : ΩA

k algebra to j + 1, and again use a
constructed recursor.

In general, for any ω : ΩA
i and ω′ : ΩA

j , the notion of heterogeneous morphism between them
arises by lifting both algebras to i ⊔ j, and taking homogeneous morphisms between these.

Example 23. The NatSig : Sig0 signature gives rise to NatSigT id : NatSigA1 . This con-
sists of Nat : Set1 together with zero and suc. Assuming a recursion principle as described
above, and Bool : Set0, we may define an isZero : Nat → Bool function by “downwards”
elimination. We have that (Bool, true, λ . false) : NatSigA0 , so by cumulativity we also have
(Bool, true, λ . false) : NatSigA1 , hence by recursion we get the desired morphism from NatSigT id
to this model, which contains the Nat → Bool function. We can also eliminate “upwards” by
lifting NatSigT id to any NatSigAi for i > 1.

We define –R by induction on synj. From this, we will obtain the recursor as ΩR id.

–R : (Γ : Con) (ν : SubΩΓ) → ΓM (νA (ΩT id)) (νA ω)

–R : (σ : SubΓ∆)(ν : SubΩΓ) → ∆R (σ ◦ ν) ≡ σM (ΓR ν)

–R : (A : TyΓ) (ν : SubΩΓ)(t : TmΩ (A[ν])) → AM (tA (ΩT id)) (tA ω) (ΓR ν)

–R : (t : TmΓA) (ν : SubΩΓ) → AR ν (t[ν]) ≡ tM (ΓR ν)

Let us refresh some details about the involved operations. The reader may also refer to Ap-
pendix A for definitions of the AMDS interpretations.

• For ν : SubΩΓ, we get νA : ΩA → ΓA. In the semantics, ν is a functor, and νA is its
action on objects. Analogously, for a term t : TmΩA, we have tA : (γ : ΩA) → AA γ, also
an action on objects.

• ΓM is the set of Γ-morphisms. A : TyΓ is a displayed flcwf in the semantics. AM yields
sets of displayed morphisms, corresponding to the semantic Sub component. So we have

AM : AA γ0 → AA γ1 → ΓM γ0 γ1 → Setk

• tM and σM yield actions on morphisms. For t : TmΓA and σ : SubΓ∆, we have

tM : (γM : ΓM γ0 γ1) → AM (tA γ0) (t
A γ1) γ

M

σM : (γM : ΓM γ0 γ1) → ∆M (σA γ0) (σ
A γ1)

Again, we follow the “sliced” pattern that we have seen in the term model construction.
Another way to view this, is that getting term algebras or recursors by direct induction on
signatures is futile, since in the construction we have to refer to the whole Ω signature, but
when we recurse inside Ω we necessarily get smaller signatures.
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Hence, the sliced induction can be viewed as induction on arbitrary Γ signatures which
are smaller than Ω, in the sense that there is a SubΩΓ. Of course, SubΩΓ includes “being
smaller”, but it is more general.

We look at the interpretation of type formers. Again, term and substitution equations
are given by UIP, and we omit term and substitution formers. For contexts, we again simply
recurse:

•R ν :≡ tt

(Γ ▷ A)R(ν, t) :≡ (ΓR ν, AR ν t)

Type substitution with σ : SubΓ∆ also follows the same pattern. The following is well-typed
by σR ν : ∆R (σ ◦ ν) ≡ σM (ΓR ν).

(A[σ])R ν t :≡ AR (σ ◦ ν) t

Universe

We need to define

UR : (ν : SubΩΓ)(a : TmΩU) → UM (aA (ΩT id)) (aA ω) (ΓR ν)

Morphisms in the semantics of U are simply functions. Moreover, we have aT id : TmΩ (El a) ≡
aA (ΩT id).

UR : (ν : SubΩΓ)(a : TmΩU) → TmΩ (El a) → aA ω

UR ν a t :≡ tA ω

Thus, we evaluate t in the ω algebra, the same way as we did in Chapter 2.

For El, we need to show

(El a)R : (ν : SubΩΓ)(t : TmΓ (El (a[ν]))) → aM (ΓR ν) (tA (ΩT id)) ≡ tA ω

We have aR ν : UR ν (a[ν]) ≡ aM (ΓR ν). Hence, UR ν (a[ν]) t ≡ aM (ΓR ν) t, and by computing
UR we have tA ω ≡ aM (ΓR ν) t. The target equation then follows by tT id : tA (ΩT id) ≡ t.

Identity

We need to show:

(Id t u)R : (ν : SubΩΓ)(e : TmΓ (Id (t[ν]) (u[ν]))) → tM (ΓR ν) ≡ uM (ΓR ν)

This follows from equality reflection on e, together with

tR ν : AR ν (t[ν]) ≡ tM (ΓR ν)

uR ν : AR ν (u[ν]) ≡ uM (ΓR ν)
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Internal product type

We get the following target type after unfolding (Π aB)M :

(Π aB)R : (ν : SubΩΓ)(t : TmΩ (Π (a[ν]) (B[ν ◦ p, q])))
→ (α : aA (νA (ΩT id))) → BM (tA (ΩT id)α) (tA ω (aM (ΓR ν)α)) (ΓR ν, refl)

We have

νT id : ΓT ν ≡ νA (ΩT id)

aT ν : aA (ΓT id) ≡ TmΩ (El (a[ν]))

Hence, aA (νA (ΩT id)) ≡ TmΩ (El (a[ν])). We also have aR ν : (λα. αA ω) ≡ aM (ΓR ν), there-
fore αA ω ≡ aM (ΓR ν). With this in mind, the goal type can be rewritten as

(Π aB)R : (ν : SubΩΓ)(t : TmΩ (Π (a[ν]) (B[ν ◦ p, q])))
→ (α : TmΩ (El (a[ν]))) → BM (tA (ΩT id)α) (tA ω (αA ω)) (ΓR ν, refl)

We have the following typing now:

BR (ν, α) (t α) : BM ((t α)A (ΩT id)) ((t α)A ω) (ΓT ν, refl)

By the action of –A on internal application, we have

BR (ν, α) (t α) : BM (tA (ΩT id) (αA (ΩT id))) (tA ω (αA ω)) (ΓT ν, refl)

But since αT id : αA (ΩT id) ≡ α, this is exactly the target type. Therefore the definition is:

(Π aB)R ν t :≡ λα.BR (ν, α) (t α)

External product type

We again simply recurse through the indexing:

(ΠExtAB)R : (ν : SubΩΓ)(t : TmΩ (ΠExtA (λα. (B α)[ν])))

→ (α : A) → (B α)M (tA (ΩT id)α) (tA ω α) (ΓR ν)

(ΠExtAB)R ν t :≡ λα. (B α)R ν (t α)

This concludes the definition of –R.

Definition 51 (Recursors). Assuming Ω : Sigj, a k level such that k ≥ j + 1 and ω : ΩA
k , we

have ΩR id : ΩM (ΩT id)ω as the recursor for the term algebra.

4.4.5 Eliminator Construction

We assume Ω : Sigj and ωD : ΩD
k (ΩT id), where k ≥ j + 1. Again we implicitly lift the term

algebra from level j + 1 to k. Here, ωD is a displayed algebra over the term algebra. We seek
to construct an inhabitant of ΩS (ΩT id)ωD. We define –E by induction.



74 4.4. TERM ALGEBRAS

Constructing eliminators is on the whole quite similar to the recursor construction. The
switch from morphisms to sections is mechanical. We shall only look at U, El and Π here.

–E : (Γ : Con) (ν : SubΩΓ) → ΓS (νA (ΩT id)) (νD ωD)

–E : (σ : SubΓ∆)(ν : SubΩΓ) → ∆E (σ ◦ ν) ≡ σS (ΓE ν)

–E : (A : TyΓ) (ν : SubΩΓ)(t : TmΩ (A[ν])) → AS (tA (ΩT id)) (tD ωD) (ΓE ν)

–E : (t : TmΓA) (ν : SubΩΓ) → AE ν (t[ν]) ≡ tS (ΓE ν)

For the universe, we have the following.

UE : (ν : SubΩΓ)(a : TmΩU) → (α : aA (ΩT id)) → aD ωD α

By aT id : aA (ΩT id) ≡ TmΩ (El a), we can give the following definition:

UE : (ν : SubΩΓ)(a : TmΩU) → (α : TmΩ (El a)) → aD ωD α

UE ν aα :≡ αD ωD

In other words, we evaluate α in the ωD displayed algebra. Let us check that this is well-typed:

αD : {ω : ΩA}(ωD : ΩD ω) → aD ωD (αA ω)

αD ωD : aD ωD (αA (ΩT id)

αT id : αA (ΩT id) ≡ α

Thus αD ωD : aD ωD α. Recall that αD can be viewed as the logical predicate interpretation of
α, which expresses that αA preserves –D predicates.

For El, we need to show

(El a)S : (ν : SubΩΓ)(t : TmΓ (El (a[ν]))) → aS (ΓE ν) (tA (ΩT id)) ≡ tD ωD

This follows from tT id : tA (ΩT id) ≡ t and aE ν : (λ t. tD ωD) ≡ aS (ΓE ν).

The internal product interpretation is defined similarly as before:

(Π aB)E : (ν : SubΩΓ)(t : TmΩ (Π (a[ν]) (B[ν ◦ p, q])))
→ (α : TmΩ (El (a[ν]))) → BS (tA (ΩT id)α) (tD ωD (αD ωD)) (ΓE ν, refl)

(Π aB)E ν t :≡ λα.BE (ν, α) (t α)

We make use of νT id, uT id, aE ν and aT ν to type-check the definition.
Interpretations for contexts and other type formers are also essentially the same as with

recursors.

Definition 52 (Eliminators). Assuming Ω : Sigj, a k level such that k ≥ j + 1 and ωD :
ΩD

k (ΩT id), we have ΩE id : ΩS (ΩT id)ωD as the eliminator.

Theorem 5. ΩT id is initial when lifted to any k ≥ j + 1 level.

Proof. ΩT id : ΩA
k supports elimination by Definition 52, and elimination is equivalent to ini-

tiality by Theorem 1.
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4.5 Levitation and Bootstrapping for Closed Signatures

When we previously introduced the ToS, we only specified the notion of model, and simply
assumed that there is an evident notion of model morphism and also a notion of induction. For
the theory of closed signatures, we can do better because ToS is itself a closed FQII theory.
This is levitation [CDMM10], i.e. the situation where a ToS contains a signature for itself.
Levitation is useful for bootstrapping: it shall be sufficient to specify only the notion of model
for ToS, and notions of ToS-morphisms, initiality and induction can be computed from that.
This bootstrapping process eliminates the need for either

• Assuming that the syntax of ToS already exists as a QIIT. Here, the assumed syntax is
necessarily ad-hoc, since we are still in the process of building metatheory for QII theories.

• Bootstrapping the ToS syntax as “raw” syntax, using simple inductive types, typing/conversion
relations and quotients. This is very tedious and should be avoided if possible. See Section
4.6 for a discussion of this approach, although used for slightly different purposes.

In this section we describe levitation for closed signatures. The theory of closed signatures
does not have ΠExt, but is otherwise the same as before. As we have seen, the inclusion of ΠExt

yields a ToS which is itself infinitary, which breaks levitation. Moving to a theory of infinitary
signatures will restore levitation; we revisit this is Section 5.7.

4.5.1 Models & Signatures

Since we do not have ΠExt, we only need a single universe level for indexing models.

Definition 53. For some i level, we have ToSi : Seti+1 as the type of models of ToS, where all
underlying sets return in Seti.

Definition 54 (Flcwf model). For i, we have Mi : ToSi+2 as the model where contexts are
flcwfs of algebras, and algebras have underlying sets in Seti. To see how i + 2 checks out: if
algebras contain Seti-s, the category of algebras has a Seti+1 for a set of objects, and Mi itself
includes a category of these categories.

So far, this can be defined while only using the notion of model for ToS. What about
signatures though? Previously we had that signatures are contexts in ToS syntax, and to talk
about syntax, we need to know at least the notion of ToS model morphism.

Actually, if we only want to be able to write down signatures and interpret them in the
semantics, we do not need a ToS syntax. A functional encoding suffices.

Definition 55. A bootstrap signature is a function which for every ToS model yields a
context in that model. The type of bootstrap signatures is:

BootSig :≡ (i : Level) → (M : ToSi) → ConM

Note that this is a universe-polymorphic type. This is not an issue; universe polymorphism is a
sensible feature in type theories, or alternatively we may assume that quantification over levels
takes place in some outer theory.

We do not get induction on bootstrap signatures, nor do we automatically get any naturality
or parametricity property.
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Example 24. For NatSig, we define the expected signature, but we specify it in an arbitrary
M model instead of the syntax.

NatSig : BootSig

NatSig :≡ λ(i : Level)(M : ToSi).

(•M ▷M (N : UM) ▷M (zero : ElM N) ▷M (suc : N ⇒M ElM N))

We might as well use the same notations for signatures as in Section 4.1, as every signature
from before can be unambiguously rewritten as a bootstrap signature.

With this, we can interpret each signature in an arbitrary ToS model, by applying a signature
to a model. BootSigj can be viewed as a precursor to a Böhm-Berarducci encoding [BB85] for
the theory of signatures, but we only need contexts encoded in this way, and not other ToS
components. In functional programming, this style of encoding is sometimes called “finally
tagless” [CKS07].

If we only want to build the 2LTT-based semantics of signatures, we are done with boot-
strapping right now. In the 2LTT semantics, we never needed induction on ToS, we only needed
to be able to write down signatures and interpret them in models - which we can do. Going
forward, we only need to assume an inner (Ty0, Tm0) layer with appropriate type formers, and
define the flcwf model the same way as before.

On the other hand, if we want to consider term models, we do need a notion of induction
on ToS.

Definition 56 (Signature for ToS). We define ToSSig : BootSig as the bootstrap signature
for the theory of signatures. We present an excerpt from ToSSig below using internal notation; it
should be clear that every component can be reproduced. We use SigU and SigEl to disambiguate
components inside the signature from ToS components.

Con : U

Sub : Con → Con → U

Ty : Con → U

Tm : (Γ : Con) → TyΓ → U

...

SigU : {Γ : Con} → El (TyΓ)

SigEl : {Γ : Con} → TmΓ SigU → El (TyΓ)

Π : {Γ : Con}(a : TmΓ) → Ty (Γ ▷ SigEl a) → El (TyΓ)

...

For each i, the interpretation of ToSSig in Mi yields an flcwf Γ such that ConΓ ≡ ToSi, that
is, objects are models of ToS at level i. This yields a model theory for ToS, which includes the
notion of induction at level i.

We also know by the definition of ToSi that we have cumulativity, i.e. ToSi ≤ ToSi+1.
5

Hence, we can make the following definition:

5For concrete bootstrap signatures we may conclude cumulativity of algebras, but we cannot conclude this
universally for all bootstrap signatures, since we cannot do induction on them, and we do not even assume that
they are parametric in levels.
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Definition 57. M : ToS0 supports elimination into any universe if it supports elimination
when lifted by cumulativity to any ToSi.

This notion of (large) elimination is sufficient for the term algebra and eliminator construc-
tions in Section 4.4. Thus, we were able to derive all required concepts just from the notion of
model of ToS.

4.6 Reductions to Basic Type Formers

From the construction of term algebras and eliminators, we get a reduction of all QIITs to a
single infinitary QIIT, namely the syntax of ToS. We spell this out:

Theorem 6. If an extensional type theory supports syntax for ToSj+1,j, it supports initial
algebras for each signature in Sigj.

Ideally, we would like to reduce QIITs to some collection of basic type formers. The ToS
syntax is far from being a basic type former, it is rather large and complicated. Therefore, the
remaining job is to construct the ToS syntax from simpler types.

We do not attempt here to construct the entire ToS syntax as specified. Lumsdaine and
Shulman [LS, Section 9] showed that infinitary QIITs are not constructible from inductive
types and simple quotienting with relations. Recently, Fiore, Pitts and Steenkamp showed that
a class of infinitary quotient inductive types, called QWI-types, can be reduced to inductive
types, quotients and the axiom of weakly initial sets of covers (WISC) [FPS21]. The setting
additionally assumes extensional equality and propositional extensionality for an impredicative
universe of propositions. The infinitary ToS syntax is not immediately a QWI-type because it
is inductive-inductive. Nevertheless, it is a reasonable conjecture that infinitary QIITs are also
constructible from the WISC principle. We leave this to future work.

In this section we show constructions of certain fragments of the full ToS syntax. We first
give a general description of QIIT constructions, then describe two specific constructions, for
a) finitary inductive-inductive signatures b) closed QII signatures.

4.6.1 Finitary QIIT Constructions

The general recipe of constructing finitary QIITs from basic type formers is the following. This
is more or less adapted from Streicher [Str93] and Brunerie et al. [Bru19].

1. We define the raw syntax, using at most inductive families, but no induction-induction.
These definitions include all value constructors of the goal QIIT, but there is no indexing
involved, constructors only store the raw inductive data. For example, the raw syntax of
closed ToS would include the following:

Con : Set • : Con

Sub : Set –▷– : Con → Ty → Ty

Ty : Set id : Con → Sub

Tm : Set –◦– : Con → Con → Con → Sub → Sub → Sub

...
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This can be given by a simple mutual inductive definition, which can be represented as an
indexed inductive family. Indexed families can be reduced to indexed W-types [KvR20],
which can be reduced in turn to W-types and the identity type.

2. We define typing and conversion relations on the raw syntax. For dependent type theories,
the two are usually mutual: typing includes the rule which coerces terms along type
conversion, and conversion is usually defined only on well-typed terms. However, it is
still possible to define everything using only indexed inductive families.

3. The underlying sets are given as follows: we take raw syntactic objects which are merely
well-formed (i.e. proofs of well-formedness are propositionally truncated, or defined in a
universe of irrelevant propositions to begin with), and quotient them by conversion.

4. We show that these underlying sets support all constructors of the target QIIT: value
constructors are defined using raw constructors, while equality constructors follow from
conversion rules and quotienting.

5. We construct a unique morphism from the above term model to an arbitrary model of the
QII theory. This usually requires several steps. One approach is to first define by induction
on raw syntax a family of partial functions into the assumed model, then separately show
that these functions are total on well-typed input. The separation is necessary because
the induction principle for the raw syntax is too weak: it cannot express the inductive-
inductive indexing dependencies which would be required to construct the morphism in
one go. For instance, if we have the QIIT syntax for ToS, and we have some displayed
model A over the syntax, the eliminator contains the following:

ConS : (Γ : Con) → ConA Γ

SubS : (Γ∆ : Con)(σ : SubΓ∆) → SubA (ConS Γ) (ConS ∆)σ

But with the raw syntax, we can only eliminate using a displayed model of the raw syntax,
and the eliminator contains the following:

ConS : (Γ : Con) → ConA Γ

SubS : (σ : Sub) → SubA σ

Lastly, we show that the constructed morphism is unique. This is done by induction on
raw syntax, and is generally possible in just one elimination.

Note that the above recipe permits a large number of design variations. Some examples:

• We may omit fields from raw syntax which are fully determined by type indices. This
may make subsequent work easier or harder depending on particulars.

• We may start from a well-scoped raw syntax, if there is a notion of scoping in the goal
QIIT. In general, we may start from some kind of partially raw syntax, which is well-
typed to some extent. This extent is bounded by what is expressible only using indexed
inductive families but not induction-induction.
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• We may move along a spectrum of “paranoia” in the specification of well-typing [Win20,
Section 9.2]. A paranoid typing rule assumes the well-formedness of everything involved,
for example assumes the well-formedness of a context Γ before it assumes well-formedness
of a type in Γ. In contrast, an “economic” specification tries to make the minimum neces-
sary assumptions, relying on admissibility properties. It is possible that well-formedness
of Γ is derivable from the well-formedness of a type in Γ, so the assumption can be
dropped.

However, if we omit too much, then some other admissibility properties may break! Design
decisions along the paranoia spectrum are often all tangled up like this; hence the name
“paranoid”, which probably stems from the anxiety of breaking things by making too
many shortcuts.

• Instead of using partial maps from raw syntax to the the assumed model in step 5, we
may define relations between well-formed raw syntax and the given model, and later show
that these relations are functional. This seems to be a technically easier approach. The
reason is that we do not have decidable definedness of the partial maps, which makes
them more complicated. A decidably defined partial function has type A → MaybeB.
For any a : A we can look at whether the function is defined on it. A more general partial
function has type A → ((P : Prop) × (P → B)). If we forget about the Prop-ness of P
for the time being, we can equivalently have a relation A → B → Set instead. This is
a more “indexed” definition compared to the “fibered” presentation with P : Prop, and
indexed presentations in type theory usually enjoy more definitional computation rules -
this is also the reason why displayed algebras are better-behaved computationally than
fibered algebras.

It should be apparent that constructing QIITs is tedious, and especially so for large QIITs
like type theories. Hence, it is best if we do it just once, for a theory of signatures from which
every other QIIT can be constructed.

Connection to the initiality conjecture

The initiality conjecture was made by Voevodsky [Voe17], and it is essentially the conjecture
that the above construction (“initiality construction”) can be carried out in sufficient formal
detail for “usual” type theories.

There has been much debate about the merits of initiality constructions. See [Con19] for a
hub of such discussions. On one hand, some people believed that the initiality construction is
essential for reconciling the usage of raw syntax and categorical notions of models. On the other
hand, some people dismissed the initiality construction as a pointless exercise, considering the
categorical syntax to be the actual syntax, and raw syntax as merely notation for that. The
author of this thesis is of a somewhat different opinion than either of the above.

First, as a moral justification for the usage of raw syntax, the initiality construction is in-
deed mostly pointless. That is because elaboration comprises the true justification for that.
Elaboration is the effective algorithm which converts raw syntax to “core syntax”, i.e. typed
categorical syntax. Given a piece of raw syntax, even if we have done the initiality construction,
we have no effective way of learning which core syntactic object it corresponds to! The elabo-
ration literature is mainly about practical justifications for using certain raw syntaxes, and it
comes with established ways to talk about strength and correctness of elaboration algorithms.
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Second, there is a different motivation for the initiality construction: foundational minimal-
ism, the reduction of a complicated QIIT to basic type formers. Elaboration merely assumes
that a categorical core syntax already exists, as the target of elaboration, but it is orthogonal
to the construction of the core syntax. If we have elaboration, we may still want to show a
reduction of the core syntax, but now we are free to perform this construction in whatever way
is the easiest. We do not have to construct the QIIT out of a raw syntax which is intentionally
close to the raw syntax that we use in practice! In the author’s opinion, a great deal of confusion
arises from the conflation of the two different motivations for the initiality construction.

As to which way of construction is easiest: the author does not know of any truly easy way,
but this thesis shows that we only have to do it once, for a theory of signatures, and then we
can construct all other QIITs from that in a generic way. In particular, almost all type theories
in the wild are finitary closed QII theories (with the notable exceptions of our ToS-es), so if we
can construct closed signatures, we can construct initial models of almost all type theories.

What about generic ways to formalize elaboration algorithms? This seems to be a lot more
difficult. To the author’s knowledge there has not been notable research in this area. Decid-
ability of conversion is already very hard to analyze in a generic way, and the simplest possible
bidirectional elaboration algorithms rely on decidable conversion. To formalize practically re-
alistic elaboration (i.e. elaboration which includes unification) is yet more difficult.

4.6.2 Reduction of Finitary Inductive-Inductive Types

This section is based on the author’s joint work with Kaposi and Lafont [KKL19]. The core
idea is the following: a certain fragment of ToS can be constructed in a far simpler way than
what we described in Section 4.6.1, with fewer assumptions in the ambient theory. We call this
fragment the theory of finitary inductive-inductive signatures. This theory has the following
type formers (on the top of the base cwf):

• The U universe with El.

• Inductive function type Π, but without lam, and thus without βη-rules.

• External function type ΠExt, but again without lamExt.

This ToS is tuned so that

1. No quotients are required in its construction.

2. The generic term model construction still goes through for every signature in the ToS.

We explain in the following. First, the equational theory of ToS only specifies substitution, but
it contains no computation rules for type formers. Thus, ToS is a theory of neutral terms and
substitutions. This allows us to define a raw syntax which only includes normal forms, and to
define substitution as recursive functions acting on normal forms. This trivializes the conversion
relation: conversion is simply propositional equality of raw terms. Thus, there is no need to
quotient by conversion. Note that our raw syntax is infinitary because we have to represent
the branching in ΠExt. This is fine though: we only run into the issue of the missing choice
principle (presumably, the WISC principle) if we try to mix quotients and infinite branching.
Without quotients, infinite branching is not an issue.
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Second, we do not include an identity type in ToS. This blocks the other way for quotients
to enter the picture. With identity types, the generic term model construction relies on equality
reflection in ToS. But when we construct ToS syntax, the only way to show equality reflection
is to quotient raw syntax by internally provable equalities.

Third, it remains to check that the generic term model construction works with the pared-
down ToS. We only need to check that the omission of lam and lamExt does not mess things up.
Looking at Sections 4.4.3 and 4.4.5, we see that it does not: the interpretations of Π and ΠExt

only require applications in ToS, not abstractions.
Remark. Although we have not yet talked about infinitary signatures, we can give a short

summary why the current construction fails to work for their ToS. The generic term algebra
construction in Section 5.6.1 for infinitary signatures relies on there being both lam and app for
“infinitary” function types, with βη-rules. This makes the equational theory of ToS non-trivial,
so quotients are necessary in the construction of the syntax. However, this requires mixing
quotients and infinite branching, which we cannot yet handle.

We summarize the construction of the ToS syntax below. We refer the reader to [KKL19]
for details.

1. We define raw syntax by mutual induction. Substitutions are in normal form: they are
just lists of raw terms. Variables are also normalized as de Bruijn indices. We define the
action of substitution by recursion on raw syntax. In [KKL19], raw syntax is not well-
scoped, and substitution is partial, but it would be also possible to start from well-scoped
raw syntax.

2. We inductively define well-formedness relations for contexts, substitutions, types and
terms, and show by induction on raw syntax that well-formedness is propositional, i.e.
proof-irrelevant. Alternatively, we could have defined well-formedness by recursion on
raw syntax.

3. We construct a term model of ToS from well-formed raw syntax. All equations in the
model are provable from the properties of recursive substitution on raw terms.

4. We pick a ToS model, and inductively define a family of relations between the term model
and the given model, which define the function graphs of the model morphism that we
aim to define. Then we show in order:

(a) Right-uniqueness of the relation, by induction on well-formedness derivations.

(b) Stability of the relation under substitution.

(c) Left-totality of the relation, by induction on well-formedness derivations.

We then define the actual model morphism using the functionality of the relation.

5. For the uniqueness of the constructed morphism, we exploit right-uniqueness of the rela-
tion: it is enough to show that any other model morphism maps syntactic input to related
semantic output.

This construction is formalized in Agda; see [KKL19]. It uses indexed inductive families,
UIP, function extensionality, and equality reflection in the form of Agda rewrite rules, although
the latter could be in principle omitted from the formalization. Thus, it follows that any model
of ETT with inductive families supports finitary inductive-inductive types.
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4.6.3 Reduction of Closed QIITs

For closed QIITs, there is unfortunately no direct formalization which constructs the ToS. There
is one though which is close enough, by Menno de Boer and Guillaume Brunerie [BdB20]; see
also De Boer’s thesis [dB20]. This constructs a type theory with the following features:

• A contextual category for base (instead of a cwf).

• Countable predicative universes.

• N, Σ, Π, ⊤, ⊥, –+– and intensional Id.

The construction follows the 1-5 steps that we described previously in Section 4.6.1. It makes
the following assumptions:

• A universe of strict propositions Prop. Every type in this universe enjoys definitional
proof-irrelevance. This Prop is used to define partial functions and well-formedness rela-
tions.

• Function extensionality.

• Propositional extensionality for Prop.

• Quotients by relations valued in Prop.

• Indexed inductive families returning in Set or in Prop.

UIP is not assumed, instead the irrelevant equality in Prop is used everywhere. Although it is
only possible to eliminate from such equalities to Prop, this issue is sidestepped by using an
essentially algebraic specification of models, which is fibered using Prop equations.

It is very plausible that this construction can be adapted to our theory of closed QII sig-
natures. De Boer and Brunerie construct a complicated open finitary QIIT, while ours is a
fairly similar closed QIIT, with fewer and more restricted type formers. The openness comes
from the use of contextual categories, which involve indexing by external natural numbers.
Contextuality does not make much difference in the construction though, since raw syntax is
always contextual by the inductive nature of raw contexts.

Hence, it is safe to say that any model of an extensional type theory which supports the
assumptions of De Boer and Brunerie, also supports all closed QIITs.

4.7 Related Work

This chapter is based on the following publications, all coauthored by the current thesis’ author.

1. “Constructing Quotient Inductive-Inductive Types” [KKA19].

2. “Large and Infinitary Quotient Inductive-Inductive Types” [KK20b].

3. “For Finitary Induction-Induction, Induction is Enough” [KKL19].
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We summarize the differences and enhancements in this chapter, in comparison to the above
(1)-(3) sources.

The theory of signatures is similar to that in (1), except (1) does not include eliminators
for Π and ΠExt, and it has Id : TmΓ (El a) → TmΓ (El a) → TyΓ, i.e. it cannot equate terms
with arbitrary types.

The usage of 2LTT is novel compared to (1)-(3). In (1), the semantics had a cwf with Id
and K for each signature; this was extended with Σ in (2) to get the notion of flcwf that we
also use in this chapter.

The construction of left adjoints of substitutions is novel.
The current term algebra construction is the same as in (1), but universe levels were not

treated rigorously in (1); instead we adapt the more precise universe treatment from (2). No-
tions of bootstrapping and levitation are also “backported” from (2) to closed finitary signa-
tures.

(3) is summarized in the current chapter without any notable change.

ToS-style presentations

Carette and O’Connor [CO12] presented algebraic signatures as contexts in type theories. Al-
tenkirch and Kaposi [AK16] observed that induction methods and motives can be computed
as logical predicate translations on typing contexts.

Generalized algebraic theories

FQII signatures and Cartmell’s generalized algebraic theories [Car86] are close in expressive
power, but they do not appear to be equivalent.

GATs may contain an infinite number of rules, while FQII signatures are finitely long. On
the other hand, FQII signatures have ΠExt and GATs do not. It appears that infinite signatures
are stronger than ΠExt: it is possible to recover ΠExt by adding a rule for every value of the
external index, but it is not possible to recover infinite signatures with ΠExt. The reason is
that in ΠExt : (Ix : Ty0) → (Ix → TyΓ) → TyΓ, the Γ context is fixed, so it is not possible
to represent a family of signature entries where each entry may refer to the previous entry
within the same family. For example, the following (pseudo)-GAT has no corresponding FQII
signature:

A0 : U

A1 : A0 → U

A2 : (a0 : A0) → A1 a1 → U

A3 : (a0 : A0)(a1 : A1 a0) → A2 a0 a1 → U

...

Could we somehow include these? The most convenient way would be to define signatures
coinductively. However, that would cause a mismatch, that described theories are inductive,
while the ToS itself is coinductive, which rules out levitation and bootstrapping. It is potential
future work to investigate such coinductive signatures.

This leads us to the main difference in formalization between GATs and FQII signatures:
the theory of GATs itself is not presented as a GAT, instead it has a low-level presentation with
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raw syntax and well-formedness relations. As a result, the immediate metatheory of GATs is
roughly as tedious as we can expect from raw syntaxes.

This is a motivation for formally getting away from GATs, by showing their equivalence
to contextual categories. Contextual categories are algebraic and more convenient to handle
than GATs. In [Car78] one leg of this equivalence is the construction of a classifying contextual
category for each GAT, which is essentially a term model construction from quotiented raw
syntax. A downside of this setup is that classifying contextual categories cannot be easily
written out by hand like GATs. Thus, GATs necessarily remain the practical way for specifying
the classifying categories.

In contrast, the theory of FQII signatures is itself algebraic, possesses a nice model theory
(as an infinitary QII theory), and it is only mildly more complex than the theory of contextual
categories. Since the immediate theory of signatures is already quite nice, we do not feel as
much pressure to look for nicer presentations.

Nevertheless, compact alternative presentations would be still interesting to research.

• We could look for for an analogue of the GAT-contextual-category correspondence for our
signatures. This would send each signature to its classifying category.

• We could also look for an analogue of the Gabriel-Ulmer duality [GU06]. This would send
each signature to its category of models in Set. In the other direction, we would need a
way to restrict categories to those which are categories of algebras.

Essentially algebraic theories

Essentially algebraic theories (EATs) [Fre72] are categories with finite limits. This is a more
semantic notion of an algebraic signature, much like how contextual categories are a more
semantic presentation of “syntactic” GATs. For EATs Γ and ∆, the Γ-algebras internal to ∆
are simply the finite limit preserving functors from Γ to ∆, while algebra morphisms are natural
transformations.

We have more syntactic notions of essentially algebraic signatures as well. For example,
the signatures of Adámek and Rosicky [AAR+94, Section 3.D] or the Partial Horn theories of
Palmgren and Vickers [PV07] are such. These signatures are also specified using raw syntax, but
they are significantly easier to formalize than GATs, as the syntax of signatures admits fewer
dependencies. However, the lack of dependency also causes a significant encoding overhead on
comparison to GATs or FQII signatures. For a classic example, the theory of transitive directed
graphs is given with an FQII signature as

V : U

E : V → V → U

– ◦ – : (i j k : V) → E i j → E j k → El (E i k)

The same in a pseudo-EA notation could be:

V : Set

E : Set

src : E → V

tgt : E → V
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– ◦ – : (f g : E) → tgt f = src g → (h : E)× (srch = src f)× (tgth = tgt g)

In short, the FQII notation is “indexed”, while the EA is “fibered”. Also recall Theorem 3.
While this example is not wildly different in the two cases, if we move to more complex theories,
such as type theories, the encoding overhead of EA signatures is much greater. In informal
mathematics, this is still not an issue, but in mechanized mathematics, it is. Type dependencies
are a formal complication, but in proof assistants they enable more compact definitions. They
also often force indices to be particular values, which enables inference and unification to fill in
more details in surface syntaxes.

Sketches (see e.g. [Bar85, Section 4]) are another way to specify EATs. They lie somewhere
between the syntactic/logical styles of specification, and just taking EATs to be finitely complete
categories. They support an elegant metatheory, but they involve an encoding overhead which
is likely unworkable in mechanized settings.

All in all, there is a rich literature on EATs, sketches and related topics, and it would be
interesting to try to connect our signatures to any of these, or try to reproduce the numerous
related results in categorical universal algebra. This remains future work for now.

Prior work on (quotient) inductive types

The current work grew out of a line of research in the field of type theory. This involved working
out more and more expressive classes of inductive types.

Martin-Löf’s W-types [ML84] are an early example for a scheme for inductive types. In
fact, it is better viewed as a single parameterized inductive type, which allows construction of
a remarkable range of inductive types [Hug21], although with some encoding overheads.

Inductive families [Dyb94] allow indexing the inductive sort with external types. This
directly supports only single-sorted signatures, but some form of mutual induction can be
easily modeled through the indexing. Inductive families have become a core feature in all
major implementations of type theories, such as Coq, Idris, Lean or Agda.

Inductive-recursive types [DS99] allow mutual definition of an inductive sort and a function
which acts on the sort. These types are absent from this thesis, they are not representable with
any of our theories of signatures. Induction-recursion is notable for tremendously boosting the
proof-theoretic strength of a type theory; a primary motivation for it was to explore the limits
of predicative constructive mathematics. It is useful for modeling a wide variety of universe
features internally to a type theory [Kov22a].

Induction-induction was described in [AMFS11] and in [NF13]. This notion allowed two
inductive sorts, where the second one may be indexed over the first. As we mentioned previously,
this notion is more restricted than what was covered in this chapter.

[ACD+18] investigated QIITs. The notion of signature here is more of a semantic nature
than ours. Signatures are defined simultaneously with their categories of algebras. A signature
is a inductive list of functors: at each signature entry, we extend the category of algebras
with a functor whose domain is the current category of algebras. This can be viewed as a
generalization of F-algebras as a form of specification. However, there is no strict positivity
restriction in signatures, hence no attempt at constructing initial algebras either.

We will look at work related to infinitary QITs in Section 5.8 and at work related to higher
inductive types in Section 6.3.2.



CHAPTER 5

Infinitary Quotient Inductive-Inductive Signatures

In this chapter we present another theory of signatures, for infinitary quotient inductive-
inductive signatures. As we will see, the reason for considering the finitary and infinitary
cases separately is that they support different semantics.

First, we specify signatures and define semantics in 2LTT. Then, like in the previous chapter,
we switch to a extensional TT setting and look at term algebras and related constructions.

5.1 Theory of Signatures

Metatheory. We work in 2LTT. We assume the following type formers in the inner theory:
⊤, Σ, extensional identity – = – and Π. Note that Π is an extra assumption compared to what
we had in the finitary case.

Definition 58. A model of the theory of signatures consists of the following.

• A cwf with underlying sets Con, Sub, Ty and Tm, all returning in the outer Set universe
of 2LTT.

• A Tarski-style universe U with decoding El. U is closed under the following type
formers:

– The unit type ⊤.

– Σ-types Σ : (a : TmΓU) → Tm (Γ ▷ El a)U → TmΓU, with specifying isomorphism

(proj, –,–) : TmΓ (El (Σ a b)) ≃ (t : TmΓ (El a))× TmΓ (El (b[id, t]))

– Extensional identity Id : TmΓ (El a) → TmΓ (El a) → TmΓU, specified by
(reflect, refl) : TmΓ (El (Id t u)) ≃ (t ≡ u).

– Small external product type Πext : (Ix : Ty0) → (Ix → TmΓU) → TmΓU,
specified by (appext, lamext) : TmΓ (Πext Ix b) ≃ ((i : Ix ) → TmΓ (El (b i))).

• Internal product type Π : (a : TmΓU) → Ty (Γ▷El a) → TyΓ, specified by (app, lam) :
TmΓ (Π aB) ≃ Tm (Γ ▷ El a)B.

• External product type ΠExt : (Ix : Ty0) → (Ix → TyΓ) → TyΓ, specified by
(appExt, lamExt) : TmΓ (ΠExt Ix B) ≃ ((i : Ix ) → TmΓ (B i)).

86
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Once again we assume that an initial model for ToS exists, and a signature is a context in
the initial model.

Notation 19. We employ the same notations for signatures as in Section 4.1. In addition to
that, we have the usual internal notation for ⊤ and Σ, and we write (x : A) →ext B for Πext

and λext for lamext.

Let us do a comparison to the finitary case. First, the new signatures do not support sort
equations, since there is no identity type for arbitrary terms, only for terms with types in U.
Second, the universe is not empty anymore, it supports ⊤, Σ and the small external product
type Πext, which can be viewed as an analogue of ΠExt inside U. We look at example signatures.

Example 25. Infinitary constructors can be given with Πext. A classic example is W-types.
Assuming S : Ty0 and P : S → Ty0, we have the following signature for P -branching well-
founded trees:

W : U

sup : (s : S) →Ext (P s →ext W ) → ElW

Note that since P s →ext W is in U, it can appear on the left side of →. If P s is an infinite
type, sup branches with an infinite number of inductive subtrees. Of course, finitary branching
can be also expressed with Πext, but that use case was already possible with finitary signatures,
by iterating → finite times.

Example 26. Equations can appear as assumptions now. The simplest example is set-
truncation for some A : Ty0:

|A|0 : U

embed : A →Ext El |A|0
trunc : (x y : |A|0)(p q : Idx y) → El (Id p q)

However, this ends up being redundant in our semantics, since we assume UIP, and every
semantic underlying type will be a set. Does this mean that recursive equations are useless?
We do not think so. In the specification of cubical type theories, there are boundary conditions
which can be given as Id assumptions [CCHM17,AHW16,AHH18]. Also, it seems that these
conditions cannot be easily contracted away. For an example of contraction, the signature

• ▷ (A : U) ▷ (c1 : ElA) ▷ (c2 : (x : A) → Idx c1 → ElA)

can be rewritten to the equivalent

• ▷ (A : U) ▷ (c1 : ElA) ▷ (c2 : ElA)

signature. However, we cannot mechanically eliminate the Id from the following signature.

A : U

B : A → U

b1 : A → El B

b2 : A → El B

...

a : (x y : A) → Id (b1 x) (b2 y) → El A
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Whether we can reformulate a without the Id condition depends on what kind of equational
theory we specify for B in the omitted parts of the signature.

However, recursive equations can be always encoded by internalizing extensional equality
in signatures. For example:

A : U

EqA : A → A → U

refl : El (EqA a a)

reflect : EqA a0 a1 → El (Id a0 a1)

UIP : (p q : EqA a0 a1) → El (Id p q)

Still, we keep recursive equalities around, since they are more ergonomic than the above en-
coding, and they pose no extra difficulty in the semantics. The current formulation of the Id
type will be more useful in Chapter 6, where higher equalities can be proof-relevant.

Example 27. All theories of signatures that we discussed so far, have (infinitary) signatures.
For finitary signatures, the ToS is itself infinitary because of ΠExt. We assume an universe

U0 in Ty0. In the signature, we have

Con : U

Ty : Con → U

ΠExt : {Γ : Con} → (A : U0) →Ext (A →ext TyΓ) → El (TyΓ)

In the signature for infinitary ToS, we have

Univ : {Γ : Con} → TyΓ

Πext : {Γ : Con} → (A : U0) →Ext (A →ext TmΓUniv) → TmΓUniv

Remark. When we will take the semantics of the above signature, we will not exactly get back
the theory of signatures that we are using right now. We have ToS in 2LTT now, but the
semantics is in the inner theory. What we can do though, is to assume that the inner theory
is also a 2LTT. Then we might assume that the inner theory of that is again a 2LTT, and so
on. This is a possible (and quite natural) generalization of 2LTT to n-level type theory. In this
setting, one round of self-description requires a bumping of levels in the sense of n-level TT. In
this thesis we do not explore this, instead we use a more conventional universe hierarchy in an
extensional TT, to investigate self-description.

Example 28. We have seen in Example 15 that Ty0-valued presheaves have finitary signatures.
With infinitary signatures, we can also cover monads on Ty0. We assume a universe U0 : Ty0.

M : U0 → U

map : (A → B) →Ext MA → El (MB)

mapid : El (Id (map idm)m)

map◦ : El (Id (map (f ◦ g)m) (map f (map g m)))

return : A →Ext El (MA)
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bind : M A → (A →ext MB) → El (MB)

returnr : El (Id (bindm return)m)

returnl : El (Id (bind (return a) f) (f a))

assoc : El (Id (bind (bindmf) g) (bindm (λ a. bind (f a) g)))

We rely on →ext to specify binding. The join-based specification would not work, since
M (MA) is not valid in signatures. The above signature can be helpful for deriving some of the
metatheory of Dijkstra monads [MAA+19, Section 5].

In the 2LTT-based semantics, we will get M : U0 → Ty0, which is not quite an endofunctor.
In the ETT-based semantics in Section 5.6 we will be able to pick universe levels more precisely,
so we can specify algebras where M : Seti → Seti. However, we will not get free monads from
the term algebra construction, because the universe levels do not match up as needed. Recall
from Section 4.4.3 that the level of sets of terms is j + 1 when j is the level of external indices
in a signatures. Hence, if the parameter types to M are in Setj, then external indices are in
Setj+1, so we get M : Setj → Setj+2 in the term algebra for monads.

Example 29. It is worth to note that every set-truncated higher inductive type from the
Homotopy Type Theory book [Uni13] is covered. This includes

• The cumulative hierarchy of sets [Uni13, Section 10.5].

• Cauchy real numbers [Uni13, Section 11.3].

• Surreal numbers [Uni13, Section 11.6].

5.2 Semantics

5.2.1 Overview

As we mentioned, we need a different semantics for infinitary signatures. First, we look at
why the previous semantics fails. We try to model signatures again as flcwfs, and morphisms
as strict flcwf-morphisms. The simplest point of failure is the interpretation of the unit type
⊤ : TmΓU.

In the semantics, this is the same as defining ⊤ : SubΓTy0, where Ty0 is the flcwf of inner
types. The only sensible definition here is the functor which is constantly ⊤0. But this does
not strictly preserve context comprehension or the finite limit type formers. If we have

⊤ : ConΓ → Ty0
⊤Γ :≡ ⊤0

then we have ⊤ (Γ ▷Γ A) ≡ ⊤0, but ⊤Γ ▷Ty0 ⊤A ≡ ⊤0 × ⊤0. Thus, ⊤0 ̸≡ ⊤0 × ⊤0, but of
course ⊤0 ≃ ⊤0 ×⊤0.

Let us look at Πext : (A : Ty0) → (A → TmΓU) → TmΓU as well, since that is a more
interesting new feature than the unit type. The only viable definition is to take the A-indexed
product of SubΓTy0 morphisms, so we map objects of Γ to function types:

ConΠext Ab Γ :≡ (α : A) → Conbα Γ
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But now we have

(Πext Ab) •Γ ≡ (α : A) → Conbα •Γ ≡ A → ⊤0

Also, •U ≡ ⊤0. Hence, (Π
ext Ab) •Γ ̸≡ ⊤0, although (Πext Ab) •Γ ≃ ⊤0.

Intuitively, if U has no type formers, the terms in U are neutral, i.e. variables applied to
zero or more neutral terms. But variables in the semantics simply project out components
from iterated Σ-types. For example, the action of q : Tm (Γ ▷ A) (A[p]) on objects, types,
morphisms and terms is given by taking second projections. Since all structure in Γ ▷ A is
given by pairing things, q strictly preserves all structure, and the same goes for all variables.

Substitutions and terms in the finitary ToS are only allowed to freely reshuffle structure.
We can forget, duplicate, or permute signature entries, or build neutral expressions from as-
sumptions. In contrast, the infinitary ToS allows us to take small limits of assumptions, using
⊤, Σ, Id and Πext to build new inhabitants of U. We summarize the process of getting the
new semantics:

1. Strict structure-preservation for type formers in U generally fails, but they still preserve
structure up to isomorphism.

2. Hence, we switch from strict flcwf-morphisms to weak ones, which preserve •, compre-
hension and fl-structure weakly.

3. However, in the finitary case we often relied on transporting along preservation equations.
We need to recover transports along isomorphism.

4. Hence, we extend semantic types from displayed flcwfs to isofibrations, which support the
required transports.

5. However, this rules out sort equations because they are not stable under isomorphisms.
For example, for sets A, B, C such that A ≃ B and A ≃ C, it is not necessarily the case
that B ≡ C.

Univalent semantics

The isofibrant semantics will turn out to be significantly more technical than the strict se-
mantics. Instead of working with isofibrations in an extensional setting, could we work with
univalent structures in homotopy type theory? In other words, work with univalent categories
of algebras, and univalent displayed categories over them [AL19]. A major benefit of the uni-
valent setting is that we would get a structure identity principle [Acz11] out of the semantics,
which says that for algebras, isomorphism is the same as equality.

However, it appears that univalent cwfs are overall yet more technical to handle than isofi-
brations. In an univalent cwf, objects and types are generally h-groupoids, so we would have
groupoids of algebras instead of sets of algebras. This implies that type equalities are between
groupoids, so they need to be coherent, if we want them to be well-behaved. Hence, Ty is not
an 1-presheaf over contexts, but rather a (2, 1)-presheaf.

Alternatively, we could simplify the task by only constructing univalent categories of alge-
bras, and skipping the family structure (and fl-structure). This would be the minimum amount
of effort that would yield the structure identity principle.
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Both of these would be interesting to check in future work. As a third alternative, instead
of stopping at set-truncated algebras in HoTT, we might as well consider types at arbitrary
h-levels, and construct (ω, 1)-categories of algebras. This comprises a semantics of higher
inductive-inductive signatures. We do not present a full higher-categorical semantics in this
thesis; we only present a fragment of it in Chapter 6.

5.2.2 Model of the Theory of Signatures

In the following we present a model of ToS. We call it M, and like before, we use bold font to
refer to components of M.

Contexts

Γ : Con is again an flcwf, but with a minor change: K is not strict anymore, so we have
(appK, lamK) : TmΓ (K∆) ≃ SubΓ∆. As we will see shortly, A[σ] does not support strict
displayed K anymore, hence the change.

Substitutions

σ : SubΓ∆ is a weak flcwf-morphism, that is, a functor between underlying categories, which
also maps types to types and terms to terms, and satisfies the following mere properties:

1. σ (A[σ]) ≡ (σA) [σ σ]

2. σ (t[σ]) ≡ (σ t) [σ σ]

3. The unique map ϵ : Sub (σ •) • has a retraction.

4. Each (σ p, σ q) : Sub (σ (Γ ▷ A)) (σ Γ ▷ σA) has an inverse.

In short, σ preserves substitution strictly and preserves empty context and context extension
up to isomorphism. We notate the evident isomorphisms as σ• : σ • ≃ • and σ▷ : σ (Γ ▷ A) ≃
σ Γ ▷ σA. Our notion of weak morphism is the same as in [BCM+20], when restricted to cwfs.

Theorem 7. Every σ : SubΓ∆ preserves fl-structure up to type isomorphism. That is, we
have

σΣ : σ (ΣAB) ≃ Σ (σA) ((σB)[σ−1▷ ])

σId : σ (Id t u) ≃ Id (σ t) (σ u)

σK : σ (K∆) ≃ K (σ∆)

These are all natural in the following sense: for σ : SubΓ Γ∆, if we have σΣ as a type isomor-
phism in σ∆, if we reindex it by σ, we get σΣ as a type isomorphism in σ Γ. The same holds
for σId and σK.

Moreover, σ preserves all term and substitution formers in the fl-structure. For example,
σ (proj1 t) ≡ proj1 (σΣ[id,σ t]).
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Proof. For σΣ, we construct the following context isomorphism:

(σ Γ ▷ σ (ΣAB)) ≃ (σ Γ ▷ σA ▷ (σB)[σ−1▷ ])

≃ (σ Γ ▷ Σ (σA) ((σB)[σ−1▷ ]))

This isomorphism is the identity on σ Γ, hence we can extract the desired σΣ : σ (ΣAB) ≃
Σ (σA) ((σB)[σ−1▷ ]) from it.

For σId, both component morphisms can be constructed by refl and equality reflection, and
the morphisms are inverses by UIP. We omit here the verification of naturality and that σ
preserves term and substitution formers in the fl-structure.

For σK, note the following:

(• ▷ σ (K∆)) ≃ (σ • ▷ σ (K∆)) ≃ σ (• ▷ K∆)

≃ σ∆ ≃ (• ▷ K (σ∆))

This yields a type isomorphism σ (K∆) ≃ K (σ∆) in the empty context, and we can use the
functorial action of ϵ : SubΓ • to weaken it to any Γ context.

Identity and composition

id : SubΓΓ is defined in the obvious way, with identities for underlying functions and for
preservation morphisms.

For σ ◦δ, the underlying functions are given by function composition, and the preservation
morphisms are given as follows:

(σ ◦ δ)−1• :≡ σ δ−1• ◦ δ−1•
(σ ◦ δ)−1▷ :≡ σ δ−1▷ ◦ δ−1▷

It is easy to verify the left and right identity laws and associativity for – ◦ –.

Lemma 6. The derived preservation isomorphisms for the fl-structure can be decomposed
analogously; all derived isomorphisms in id are identities, and we have

(σ ◦ δ)Σ ≡ σ δΣ ◦ δΣ
(σ ◦ δ)Id ≡ σ δId ◦ δId
(σ ◦ δ)K ≡ σ δK ◦ δK

On the right sides, – ◦ – refers to composition of type morphisms.

Proof. In the case of Id, the equations hold immediately by UIP. For Σ and K, we prove by
flcwf computation and straightforward unfolding of definitions.

Empty context

The empty context • : Con is the same as before, i.e. the terminal flcwf. Since the unique
ϵ : SubΓ • morphism strictly preserves all structure, it also a weak morphism.
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Types

We define TyΓ : Set as the type of split flcwf-isofibrations over Γ. This consists of a displayed
flcwf together with split iso-cleaving structure. For the displayed flcwf part, we reuse previous
notation from Section 4.2.4. For the iso-cleaving, we make some auxiliary definitions first.

Definition 59 (Displayed type categories). For each Γ : ConA Γ, there is a displayed category
over the type category TyΓ Γ, whose objects over A : TyΓ Γ are elements of TyA ΓA, and
displayed morphisms over t : TmΓ (Γ ▷ A) (B[p]) are elements of TmA (Γ ▷ A) (B[p]) t. The
identity morphism is given by qA, and the composition of t and u is t[pA, u]. Analogously to
Definition 44, this extends to a displayed split indexed category.

Definition 60 (Displayed isomorphisms). A displayed context isomorphism over σ : Γ ≃ ∆,
notated σ : Γ ≃σ ∆, is an invertible displayed morphism σ : SubA Γ∆σ, with inverse σ−1 :
SubA∆Γσ−1. A displayed type isomorphism over t : A ≃ B, notated t : A ≃t B, is an
isomorphism in a displayed type category.

Definition 61. A vertical morphism lies over an identity morphism. We use this definition for
context morphisms (substitutions) and type morphisms as well.

Definition 62 (Split iso-cleaving for contexts). This lifts a base context isomorphism to a
displayed one. It consists of

coe : Γ ≃ ∆ → ConA Γ → ConA ∆

coh : (σ : Γ ≃ ∆)(Γ : ConA Γ) → Γ ≃σ coeσ Γ

coeid : coe idΓ ≡ Γ

coe◦ : coe (σ ◦ δ) Γ ≡ coeσ (coe δ Γ)

cohid : coh idΓ ≡ id

coh◦ : coh (σ ◦ δ) Γ ≡ cohσ (coe δ Γ) ◦ coh δ Γ
Here, coe and coh abbreviate “coercion” and “coherence” respectively.

Definition 63 (Split iso-cleaving for types). This consists of

coe : A ≃ B → TyA ΓA → TyA ΓB

coh : (t : A ≃ B)(A : TyA ΓA) → A ≃t coe t A

coeid : coe idA ≡ A

coe◦ : coe (t ◦ u)A ≡ coe t (coeuA)

cohid : coh idA ≡ id

coh◦ : coh (t ◦ u)A ≡ coh t (coeuA) ◦ cohuA
Additionally, for σ : SubA Γ∆σ, we have

coe[] : coe (t[σ ◦ p, q]) (A[σ]) ≡ (coe t A)[σ]

coh[] : coh (t[σ ◦ p, q]) (A[σ]) ≡ (coh t A)[σ]

Definition 64. A split flcwf isofibration is a displayed flCwF equipped with split iso-cleaving
for contexts and types.

Remark. It is not possible to model types as fibrations or opfibrations because we have no
restriction on the variance of ToS types. For example, the type which extends a pointed set
signature to a natural number signature, is neither a fibration nor an opfibration.
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Type substitution

We aim to define –[–] : Ty∆ → SubΓ∆ → TyΓ, such that A[id] ≡ A and A[σ ◦ δ] ≡
A[σ][δ]. As before, the underlying sets are given by simple composition:

ConA[σ] Γ :≡ ConA (σ Γ)

SubA[σ] Γ∆σ :≡ SubA Γ∆ (σ σ)

TyA[σ] ΓA :≡ TyA Γ (σA)

TmA[σ] ΓA t :≡ TmA ΓA (σ t)

The difference from the finitary case is that instead of preservation equations, we have isomor-
phisms, coercions and coherence. However, we can recover essentially the same reasoning as
before because all the previous transports still work. Context and type formers are given by
coercing A structures along preservation isomorphisms by σ. For example:

•A[σ] :≡ coeσ−1• •A

Γ ▷A[σ] A :≡ coeσ−1▷ (Γ ▷A A)

IdA[σ] t u :≡ coeσ−1Id (IdA t u)

KA[σ] ∆ :≡ coeσ−1K (KA ∆)

Term and substitution formers are given by composing coh-lifted isomorphisms with term and
substitution formers from A. For example:

ϵA[σ] :≡ cohσ−1• •A ◦ ϵA
pA[σ] :≡ pA ◦ (cohσ−1▷ (Γ ▷ A))−1

(σ,A[σ] t) :≡ cohσ−1▷ (∆ ▷ A) ◦ (σ,A t)

As we mentioned, only weak K is supported in A[σ]. For strict K we would have to show:

SubA Γ∆ (σ σ) ≡ TmA Γ (coeσ−1K (KA ∆)) (σ σ)

By strict K in A, it would be enough to show

TmA Γ (KA ∆) (σ σ) ≡ TmA Γ (coeσ−1K (KA ∆)) (σ σ)

But there is no reason why these sets should be equal, so we instead produce an isomorphism.
Equations for term and type substitution follow from naturality of preservation isomor-

phisms in σ, coe[], coh[] and substitution equations in A.
Iso-cleaving is given by iso-cleaving in A and the action of σ on isomorphisms, so that we

have coeA[σ] σ Γ :≡ coeA (σ σ) Γ and cohA[σ] σ Γ :≡ cohA (σ σ) Γ.
Functoriality of type substitution, i.e. A[id] ≡ A and A[σ ◦ δ] ≡ A[σ][δ], follows from

Lemma 6 and split cleaving given by coeid, coe◦, cohid and coh◦ laws in A.

Terms

TmΓA : Set is defined as the type of weak flCwF sections of A. The underlying functions of
t : TmΓA are as follows:

t : (Γ : ConΓ) → ConA Γ
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t : (σ : SubΓ Γ∆) → SubA (tΓ) (t∆)σ

t : (A : TyΓ) → TyA (tΓ)A

t : (t : TmΓ ΓA) → TmA (tΓ) (tA) t

Such that

1. t (A[σ]) ≡ (tA) [tσ]

2. t (t[σ]) ≡ (t t) [tσ]

3. The unique ϵA : Sub (t •) • id has a vertical retraction.

4. Each (t p, t q) : Sub (t (Γ ▷ A)) (tΓ ▷ tA) id has a vertical inverse.

Similarly to what we had in Sub, we denote the evident preservation isomorphisms as
t• : t • ≃id • and t▷ : t (Γ ▷ A) ≃id tΓ ▷ tA. In short, weak sections are dependently typed
analogues of weak morphisms, with dependent underlying functions and displayed preservation
isomorphisms. We also have the derived fl-preservation isomorphisms.

Theorem 8. A weak section t : TmΓA preserves fl-structure up to vertical type isomorphisms,
that is, the following are derivable:

tΣ : t (ΣAB) ≃id Σ (tA) ((tB)[t−1▷ ])

tId : t (Id t u) ≃id Id (t t) (tu)

tK : t (K∆) ≃id K (t∆)

Also, the above isomorphisms are natural in the sense of Theorem 7, and t preserves term and
substitution formers in the fl-structure.

Proof. The construction of isomorphisms is the same as in Theorem 7. Indeed, every construc-
tion there has a displayed counterpart which we can use here.

We note though that the move from Theorem 7 to here is not simply a logical predicate
translation because we are only lifting the codomain of a weak morphism to a displayed version,
and we leave the domain non-displayed. We leave to future work the investigation of such
asymmetrical logical predicate translations.

Term substitution

–[–] : Tm∆A → (σ : SubΓ∆) → TmΓ(A[σ]) is given similarly to –◦– in Section 5.2.2.
Underlying functions are given by function composition, and preservation morphisms are also
similar:

(t[σ])−1• :≡ t σ−1• ◦ t−1•
(t[σ])−1▷ :≡ t σ−1▷ ◦ t−1▷

We also have the same decomposition of derived isomorphisms as in Lemma 6. We do not
have to show functoriality of term substitution here, since that is derivable in any cwf, see
e.g. [KKA19].
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Comprehension

Γ ▷ A : Con is defined as the total flcwf of A, in exactly the same way as in the finitary case,
since the additional iso-cleaving structure plays no role in the result. p : Sub (Γ ▷ A)Γ and
q : Tm (Γ▷A) (A[p]) are likewise unchanged; they are strict morphisms, so also automatically
weak morphisms. Substitution extension (σ, t) is given by pointwise combining σ and t, e.g.
Con(σ,t) Γ :≡ (σ Γ, tΓ).

Strict constant families

We have the same definition for K∆ : TyΓ as in the finitary case, although we need to define
iso-cleaving in addition. Fortunately, coercions and coherences are all trivial because K∆ does
not actually depend on Γ.

coeK∆ σ Γ :≡ Γ

coeK∆ t A :≡ A

Universe

U : TyΓ is exactly the same as before. We define it as the type which is constantly the flcwf
of inner types, so it inherits the trivial iso-cleaving from K.

Ela : TyΓ is again the displayed flcwf of the elements of a : TmΓU. The underlying sets
are unchanged:

ConEla Γ :≡ Tm0 (aΓ)

SubEla Γ∆σ :≡ aσ Γ ≡ ∆

TyEla ΓA :≡ Tm0 (aAΓ)

TmEla ΓA t :≡ a tΓ ≡ A

We need to adjust definitions to show that Ela supports all required structure. Previously,
all context and type formers were inherited from U, since a strictly preserved them. Now, a
preserves structure up to (definitional) isomorphism of inner types. Hence, the adjustments are
quite mechanical; they are like wrapping all definitions in “unary record constructors” given
by preservation isomorphisms. For example:

•Ela :≡ a−1• tt

(Γ ▷Ela A) :≡ a−1▷ (Γ, A)

We likewise use preservation isomorphisms to define K, Id and Σ. Context coercion is coeσ Γ :≡
aσ Γ. Type coercion, for A : aAΓ is given as coe t A :≡ a t (a−1▷ (Γ, A)).

Unit type

⊤ : TmΓU is the constantly ⊤0 morphism, i.e. it maps objects to ⊤0 and types to λ .⊤0,
and maps morphisms and terms to the identity function. It clearly preserves • and –▷– up to
isomorphism.
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Sigma type

For a : TmΓU and b : Tm (Γ ▷ Ela)U, we define Σab : TmΓU as the component-wise Σ
of a and b. For the action on Γ : ConΓ, we have:

(Σab) Γ : Ty0
(Σab) Γ :≡ (α : aΓ)× b (Γ, α)

For the action on σ : SubΓ∆, we have:

(Σab)σ : (α : aΓ)× b (Γ, α) → (α : a∆)× b (∆, α)

(Σab)σ :≡ λ (α, β). (aσ α, b (σ, refl) β)

Above, the second field should have type b (∆, aσ α), while β : b (Γ, α). Therefore we need a
morphism in Γ▷Ela from (Γ, α) to (∆, aσ α), which is defined as (σ, refl), where refl : aσ α ≡
aσ α. The action on A : TyΓ is

(Σab)A : (α : aΓ)× b (Γ, α) → Ty0
(Σab)A :≡ λ (α, β). (α′ : aAα)× b (A, α′) β

Here we are somewhat running out of notation: we use α′ to refer to a type over α : aΓ in the
displayed cwf of elements Ela. The action on terms is analogous:

(Σab) t : ((α, β) : (α : aΓ)× b (Γ, α)) → (α′ : aAα)× b (A, α′) β

(Σab) t :≡ λ (α, β). (a t α, b (t, refl) β)

For the preservation of •, we need to show (Σab) • ≃ ⊤0. Unfolding the definition, we get
((α : a •)×b (•, α)) ≃ ⊤0. This holds since a • ≃ ⊤0, so a • is contractible, thus (•, α) ≡ •Γ▷Ela,
and we also know b • ≃ ⊤0. For the preservation –▷–, we need

(Σab) (Γ ▷ A) ≃ (γ : (Σab) Γ)× (Σab)Aγ

Unfolding definitions and reassociating Σ on the right side:

(α : a (Γ ▷ A))× b ((Γ ▷ A), α)

≃
(α : aΓ)× (β : b (Γ, α))× (α′ : aAα)× b (A, α′) β

Since a▷ : a (Γ ▷ A)) ≃ (α : aΓ) × (β : b (Γ, α)), we can rewrite the left side using pattern
matching notation as

(a−1▷ (γ, α) : a (Γ ▷ A))× b ((Γ ▷ A), (γ, α))

Now, since ((Γ ▷ A), (γ, α)) ≡ (Γ, γ) ▷Γ▷Ela (A, α), we know that b ((Γ ▷ A), (γ, α)) is also
isomorphic to the evident Σ type, and the preservation isomorphism follows.

Projections and pairing for Σab are defined in the obvious way by component-wise projec-
tion and pairing.
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Identity

For t and u in TmΓ (Ela), we define Id t u : TmΓU as expressing pointwise equality of weak
sections. We rely on the assumption that Ty0 has identity type.

(Id t u) Γ :≡ (tΓ = uΓ)

(Id t u)A :≡ λ e. (tA = uA)

Above, tA = uA is well-typed because of e : tΓ = uΓ. For substitutions, we have to complete
a square of equalities:

(Id t u) (σ : SubΓ∆) : (tΓ = uΓ) → (t∆ = u∆)

This can be given by tσ : aσ (tΓ) = t∆ and uσ : aσ (uΓ) = u∆. The action on terms is
analogous.

The •-preservation (t • = u •) ≃ ⊤0 follows from a • ≃ ⊤0. For ▷-preservation, we need to
show

(t (Γ ▷ A) = u (Γ ▷ A)) ≃ ((e : tΓ = uΓ)× (tA = uA))

This follows from ▷-preservation by a. Equality reflection and refl : Id t t are also evident.

Small external product type

For Ix : Ty0 and b : Ix → TmΓU, we aim to define Πext Ix b : TmΓU. The underlying
functions are:

(Πext Ix b) Γ := (i : Ix ) → b iΓ

(Πext Ix b)σ := λ f i. b i σ (f i)

(Πext Ix b)A := λΓ. (i : Ix ) → b i A (Γ i)

(Πext Ix b) t := λ f i. b i t (f i)

We rely on Π in the inner theory. The preservation isomorphisms are pointwise inherited from
b. One direction of the isomorphisms is defined as follows. Note that •U ≡ ⊤ and ▷U is Σ.

(Πext Ix b)−1• : ⊤ → (Πext Ix b) •

(Πext Ix b)−1• :≡ λ i. (b i)−1• tt

(Πext Ix b)−1▷ : (Γ : (Πext Ix b) Γ)× ((Πext Ix b)AΓ)

→ (Πext Ix b) (Γ ▷ A)

(Πext Ix b)−1▷ :≡ λ (Γ, A) i. (b i)−1▷ (Γ i, A i)

Internal product type

For a : TmΓU and B : Ty (Γ ▷Ela), we aim to define ΠaB : TyΓ. The underlying sets are
unchanged.

ConΠaB Γ :≡ (γ : aΓ) → ConB (Γ, γ)

SubΠaB Γ∆σ :≡ (γ : aΓ) → SubB (Γ γ) (∆ (aσ γ)) (σ, refl)

TyΠaB ΓA :≡ {γ : aΓ}(α : aAγ) → TyB (Γ γ) (A, α)

TmΠaB ΓA t :≡ (γ : aΓ) → TmB (Γ γ) (A (a t γ)) (t, refl)
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Likewise, all structure is defined pointwise using B structure. Similarly to the El case, we have
to sometimes fall through the defining isomorphisms for a structure. For comparison, in the
finitary case we had the following definition:

(Γ ▷ΠaB A) (γ, α) :≡ (Γ γ ▷B Aα)

Here, (γ, α) : a (Γ ▷A), so also (γ, α) : (γ : aΓ)×aAγ, so the Σ pattern-matching notation is
justified in the definition. In the current infinitary case, we have (a▷, a

−1
▷ ) : a (Γ ▷ A) ≃ ((γ :

aΓ)×aAγ) instead. But we can use the intuition that set isomorphisms are like unary record
types, so we can still give a pattern-matching definition:

(Γ ▷ΠaB A) (a−1▷ (γ, α)) :≡ (Γ γ ▷B Aα)

For the definitions of other type and term formers, we likewise insert the isomorphisms appro-
priately. It remains to define iso-cleaving Π. Coercion is given by mapping indices backwards
in Ela and coercing outputs forwards in B.

coeσ Γ :≡ λ γ. coeB (σ, refl) (Γ (a (σ−1) γ))

coe t A :≡ λ γ a. coeB (t, refl) (A (a (t−1) (a−1▷ (γ, a))))

Likewise, coh-s are given by backwards-forwards coh-s. As before, app and lam are defined as
currying and uncurrying the underlying functions.

External product type

For Ix : Setj and B : Ix → TyΓ, we define ΠExt Ix B : TyΓ as the Ix -indexed direct product
of B. Since the indexing is given by a metatheoretic function, every component is given in the
evident pointwise way, including iso-cleaving. This concludes the definition of the M model.

5.3 Left Adjoints of Substitutions

In the following we adapt Section 4.2.7 to infinitary signatures.

• We again write J–K for the interpretation into the flcwf model M.

• We also add ⊤ : TyΓ and Σ : (A : TyΓ) → Ty (Γ ▷ A) → TyΓ to the ToS. Again we do
not elaborate much on their semantics; ⊤ is given as K • in the model and Σ is given by
component-wise Σ.

We again fix Ω : Con and define heterogeneous morphisms. The types of eliminators stay
exactly the same:

–HM : (Γ : Con) → ΓA → SubΩΓ → TyΩ

–HM : (σ : SubΓ∆) → TmΩ (ΓHM γ0 γ1) → TmΩ (∆HM (σA γ0) (σ ◦ γ1))

–HM : (A : TyΓ) → AA γ0 → TmΩ (A[γ1]) → TmΩ (ΓHM γ0 γ1) → TyΩ

–HM : (t : TmΓA)(γHM : TmΩ (ΓHM γ0 γ1)) → TmΩ (AHM (tA γ0) (t[γ1]) γ
HM)
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We only need to show that the new type formers in U, namely ⊤, Σ, Id and Πext, can be
also covered in the definition of –HM . The new type formers turn out to work exactly as
mechanically as the previous ones. We have the following:

⊤HM γHM : TmΩ (⊤ →Ext El⊤)

⊤HM γHM :≡ λExt . tt

(Σ a b)HM γHM :

TmΩ (((α : aA γ0)× (bA (γ0, α))) →Ext El (Σ (α : a[γ1]) (b[γ1, α])))

(Σ a b)HM γHM :≡ λExt (α, β). (aHM γHM α, bHM (γHM , refl) β)

(Πext Ix b)HM γHM : TmΩ (((i : Ix) → (b i)A γ0) →Ext El ((i : Ix) →ext (b i)[γ1]))

(Πext Ix b)HM γHM :≡ λExt f. λext i. (f i)HM γHM

For Id, we again have to complete a square.

(Id t u) γHM : TmΩ ((tA γ0 = uA γ0) →Ext El (Id (t[γ1]) (u[γ1])))

This follows from tHM γHM and uHM γHM , the same way as in the flcwf semantics before.

Theorem 9. If every infinitary QII signature has an initial algebra, then for every ν : SubΩ∆,
there exists a left adjoint of JνK : JΩK → J∆K.

Proof. For each δ : ∆A, the comma category δ/JνK can be specified (up to isomorphism) by the
signature Ω ▷∆HM δ ν, thus it has an initial object. Hence JνK has a left adjoint.

5.4 Signature-Based Semantics of Signatures

We have seen that the –HM interpretation yields a notion of algebra morphism that is specified
inside ToS. What else can we represent in ToS? For example, can we internalize –D, –M and
–S? In this section we show that the full flcwf semantics can be expressed internally to the
ToS syntax.

This means that for each Γ : Con, we get ΓA : Ty • as the notion of algebras, ΓM : Ty (•▷(γ0 :
ΓA) ▷ (γ1 : Γ

A)) as the notion of morphisms, id : Tm (• ▷ (γ : ΓA)) (ΓM [γ0 7→ γ, γ1 7→ γ]) for the
identity morphisms, and likewise we get the whole flcwf of algebras in such an internal manner.

As we will shortly see, capturing the full flcwf semantics is possible with the infinitary ToS,
but not with the finitary ToS because it lacks the necessary type formers in U.

It would be needlessly tedious and repetitive to redo the flcwf semantics while explicitly
working with ToS components. Instead, we repurpose 2LTT for this use case. Recall that
2LTT allows to get semantics internally to any cwf with Π, Σ, ⊤ and Id. In the current section
we aim to get semantics internally to the ToS syntax. In short, this means that we work in a
2LTT where the inner theory is the theory of signatures. The picture is a bit more nuanced
though.

First, since ToS lives inside 2LTT, and we want to get presheaves over ToS in the presheaf
model, the metatheoretic setting of the presheaf model must be also a 2LTT. This might get a
bit confusing, so let us expand:
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• The syntax of 2LTT internalizes the ToS syntax as an assumed type former.

• The presheaf model of 2LTT lives inside yet another 2LTT, let us call it 2LTT*, which
embeds both the 2LTT syntax and the ToS syntax separately.

• In the presheaf model, the base cwf is the cwf of the ToS syntax in 2LTT*.

• The Ty0 type former in 2LTT is interpreted in the presheaf model using the Ty0 type
former in 2LTT*.

• We add Tysig : Set and Tmsig : Tysig → Set to 2LTT. Tysig is interpreted as the presheaf of
ToS types, and Tmsig is interpreted using the displayed presheaf of ToS terms, following
Definition 36.

• We close Tysig under type formers which represent all type formers in ToS. Like in the
previous section, we assume that ToS types are closed under ⊤ and Σ, so we have ⊤, Σ,
inductive Π, ΠExt and U in Tysig. The U in Tysig has El : Tmsig U → Tysig, and it is closed
under ⊤, Σ, Πext and Id. In the presheaf model, all structure in Tysig is interpreted using
ToS type formers in the evident way.

Notation 20. We shall omit Tmsig in the following, similarly to how we previously omitted Tm0.
We keep omitting Tm0 in the new setup as well. However, we will still mark El : U → Tysig
explicitly.

For reference, we list type formers in Tysig below.

U : Tysig

El : U → Tysig

⊤ : U

Σ : (a : U) → (El a → U) → U

Id : El a → El a → U

Πext : (Ix : Ty0) → (Ix → U) → U

Π : (a : U) → (El a → Tysig) → Tysig

ΠExt : (Ix : Ty0) → (Ix → Tysig) → Tysig

Σ : (A : Tysig) → (A → Tysig) → Tysig

⊤ : Tysig

Notation 21. We will use the – →Ext – and – →ext – notations in the following for Πext and
ΠExt, but additionally we use –→int – for internal products, to disambiguate them from outer
functions in 2LTT.

We revisit now the flcwf semantics in the new setting. The goal is to produce output by the
signature-based semantics, such that if we use the original –A interpretation on that, we get
results that are equivalent to what we get from the direct semantics. For the simplest example,
for Γ : Con, we get ΓA

sig : Ty • from the signature-based semantics, then we get (ΓA
sig)

A tt : Set,
which should be equivalent to ΓA : Set.

In this section, we only describe the signature-based semantics, and we do not formally
check the round-trip property. The round-tripping seems very plausible though, since as we
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will see, the signature-based semantics is exactly the same as the direct semantics, modulo the
change of universes and type formers.

We look at key parts of the model. In each case, we generally only check that we have
sufficient type formers. We again write components of the model in bold font.

Base cwf

Contexts in the model are still flcwfs, but now Con, Sub, Ty and Tm in flcwfs all return in Tysig.
Hence, assuming Γ : Con, we have

ConΓ : Tysig

SubΓ : ConΓ → ConΓ → Tysig

TyΓ : ConΓ → Tysig

TmΓ : (Γ : ConΓ) → TyΓ Γ → Tysig

We specify all equations using outer equality (since the Id types in Tysig are extensional, this
makes no difference). Similarly, components of A : TyΓ return in Tysig. Substitutions and
terms in the model are unchanged, they are weak morphisms and sections respectively. For
• : Con, we use ⊤ : Tysig to define the components. Likewise, we use the Σ type in Tysig to
define – ▷ –.

If we write Tmsig explicitly, we have e.g. SubΓ : Tmsig ConΓ → Tmsig ConΓ → Tysig. Thus,
we may use the simplified interpretation of functions with inner domains, from Section 3.4.3,
and if we interpret the type of SubΓ at the empty context in the presheaf model, we get
Ty (• ▷ |ConΓ| tt ▷ |ConΓ| tt).

Universe

U : TyΓ is defined as U : Con, and we take the constant displayed flcwf of the definition. Now,
we have U : Con as the flcwf of types in U : Tysig.

ConU :≡ U

SubU Γ∆ :≡ Γ →int El∆

TyU Γ :≡ Γ →int U

TmU ΓA :≡ (γ : Γ) →int El (Aγ)

•U, – ▷U – and IdU are defined using the type formers in U. As before, KU is defined simply as
a constant function. In Ela : TyΓ, we use the Id type in Tysig in morphisms and sections:

ConEla Γ :≡ El (aΓ)

SubEla Γ∆σ :≡ Id (aσ Γ)∆

TyEla ΓA :≡ El (aAΓ)

TmEla ΓA t :≡ Id (a t,Γ)A
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Type formers in U

For ⊤, Σ and Id in U, we use ⊤, Σ and Id in U : Tysig in a straightforward way. For Πext Ix b,
we have the following:

Con(Πext Ix b) Γ :≡ (i : Ix) →ext (b i) Γ

Let us look at morphisms:

Sub(Πext Ix b) σ : ((i : Ix) →ext (b i) Γ) →int El ((i : Ix) →ext (b i)∆)

Sub(Πext Ix b) σ :≡ λind t. λext i. (b i)σ (t i)

Here, we map an infinitary function to another one, which checks out just fine, since →int allows
such mapping. We have just enough higher-order functions to complete this definition. The
rest of Πext Ix b follows evidently.

Π, ΠExt, ⊤, Σ

In ΠaB, we use inductive functions in components:

Con(ΠaB) Γ :≡ (γ : aΓ) →int ConB (Γ, γ)

Sub(ΠaB) Γ∆σ :≡ (γ : aΓ) →int SubB (Γ γ) (∆ (aσ γ)) (σ, refl)

...

In ΠExt, we use →Ext. In ⊤ and Σ, we use ⊤ and Σ in Tysig. This concludes the definition of
the signature-based semantics.

Definition 65 (Signature-based AMDS interpretation). For some Γ : Con, we define the
following by interpreting Γ in the signature-based flcwf model, then interpreting the result in
the presheaf model of 2LTT.

ΓA
sig : Ty •

ΓM
sig : Ty (• ▷ (γ0 : Γ

A
sig) ▷ (γ1 : Γ

A
sig))

ΓD
sig : Ty (• ▷ (γ : ΓA

sig))

ΓS
sig : Ty (• ▷ (γ : ΓA

sig) ▷ (γ
D : ΓD

sig))

Backporting to finitary signatures

It is apparent from the previous section that the signature-based full flcwf model requires at
least ⊤, Σ and Id in U: in the definition of U in the model these are needed to define the family
structure and the finite limit structure.

Hence, if we want to only support structure in Tysig corresponding to a theory of finitary
signatures, we need to drop all semantic components which rely on the missing type formers.
We have seen this kind of trimmed semantics in Section 4.3.2. In particular, we still get a
category of algebras for each signature, since that can be modeled without ⊤, Σ and Id.
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Application: colimits

The signature-based semantics is often helpful when we want to construct new signatures from
old ones. We give an example application, in the construction of colimits.

We would like to use left adjoints of substitutions to build colimits in categories of algebras.
For this, it is enough to build indexed coproducts and binary coequalizers.

For some Γ : Con, we get ΓA
tos : Ty •. For convenience we shall work with ΓA

tos in the following,
instead of Γ. First, we construct Ix-indexed coproducts in the category of Γ-algebras, by taking
the left adjoint of the following diagonal substitution:

diag : Sub (• ▷ (γ : ΓA
tos)) (• ▷ (f : (Ix →Ext ΓA

tos)))

diag :≡ (f 7→ λext i. γ)

For coequalizers,we again take the left adjoint of a diagonal substitution, but here we need to
rely on internal morphisms in the signature:

diag : Sub (• ▷ (γ : ΓA
tos))

(• ▷ (γ0 : Γ
A
tos) ▷ (γ1 : Γ

A
tos)

▷ (f : ΓM
tos[γ0 7→ γ0, γ1 7→ γ1])

▷ (g : ΓM
tos[γ0 7→ γ0, γ1 7→ γ1]))

diag :≡ (γ0 7→ γ, γ1 7→ γ, f 7→ idtos[γ 7→ γ], g 7→ idtos[γ 7→ γ])

Above, we use idtos : Tm (• ▷ (γ : ΓA
tos)) (Γ

M
tos [γ0 7→ γ, γ1 7→ γ]), which also comes from the

signature-based semantics.
Of course, if we want to be fully precise, we need to show that what we get is equivalent

to coproducts and coequalizers in the external sense. For this, we would need the round-trip
property of the signature-based semantics.

5.5 Discussion of Semantics

Iso-fibrancy as a weak structure identity principle

The flcwfs of algebras that we get from the infinitary semantics are exactly the same as in the
finitary case. However, semantic types are a bit more interesting. The iso-fibrancy of types can
be understood as a weaker version of the structure identity principle in homotopy type theory.

The structure identity principle says that isomorphism of algebras is equivalent to equality
of algebras. This is the same as saying that categories of algebras are univalent [AKS15].
Assuming a signature Γ and algebras γ ≃ γ′, we have γ = γ′. This equality is respected by
every construction in HoTT, which implies that for any HoTT type family F : ΓA → Type, we
have a function F γ → F γ′.

We get a similar but weaker statement from the infinitary semantics: for σ : γ ≃ γ′ and some
ToS type A : TyΓ, we have a function coeσ : AA γ → AA γ′. We also have cohσ α : α ≃σ coeσ α
for some α : AA γ. So we can transport over isomorphisms, but not all metatheoretic families
can be transported, only those which arise as ToS types.

Of course, we can transport over multiple types, or telescopes of types too, by iterated
transport. For instance, given A : TyΓ, B : Ty (Γ ▷ A), α : AA γ and β : BA (γ, α), we can
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transport α first, then transport β by (σ, cohσ α). Alternatively, if we have large Σ types in
ToS, as Σ : (A : TyΓ) → Ty (Γ ▷ A) → TyΓ, that makes iterated transport superfluous.

Variations of semantics

First, unlike in the finitary case, we have no opportunity to minimize assumptions on the inner
theory. Already when we compute algebras, we need inner Π for infinitary functions, inner
⊤ for ⊤, inner Σ for Σ and inner – = – for Id. Note though that we still get semantics in
any LCCC (locally cartesian closed category), since we can build a cwf with the required type
formers from any LCCC [CD14].

Second: can we add the “large” equality type, which includes sort equations, back to in-
finitary signatures? We dropped sort equations in this chapter because they are clearly not
isofibrant. We can add them back into the mix though, at the price of dropping components
from the semantics of signatures. The reason for having isofibrant types is that type formers
in U preserve • and – ▷ – only up to isomorphism. If we drop all semantic components which
depend on • and – ▷ –, we can drop isofibrancy too from the model, and everything works. In
this case, we still get a category of algebras, plus a notion of induction, but we cannot show
that initiality is equivalent to induction, as the proof of Theorem 1 depends on –▷–.

Model Constructions

In this chapter we gain some expressive power in defining model constructions using substitu-
tions or terms. For starters, the construction of categories from monoids works now:

Example 30. Let us have MonoidSig as the signature for monoids, with M : U as the carrier
set, – · – : M → M → ElM as multiplication and ϵ : ElM as identity the element. We define
σ : SubMonoidSig CatSig to contain Obj :≡ ⊤, Hom :≡ λ .M, id :≡ ϵ and –◦– :≡ – ·–.

Many constructions in the literature which have been dubbed syntactic models [BPT17] or
syntactic translations can be defined now in the ToS, for the following reasons.

• Syntactic translations usually do not rely on models being actually syntactic: they do
not use induction on target theory syntax. A rare counterexample is our construction
of recursors and eliminators for term models. These are perhaps syntactic in the sense
that they prominently involve the syntax of some type theory, and they construct recur-
sor/eliminator functions by induction on terms.

• Syntactic translations rarely if ever involve higher-order constructions. Such would be
interpreting Con with (Con → Con) → Con, for a contrived example.

The gluing construction in Example 21 is already a fairly general example that only requires
the finitary ToS to define. That construction is more in an “indexed” style, but now we can
also do constructions in a more “fibered” style.

Example 31. We may consider a unary parametricity translation in the style of Bernardy,
Jansson, and Paterson [BJP10], which makes use of the small Σ-type in the theory of signature.
We assume TT : Ty • as the signature for the theory, and TTD : Ty (• ▷ (M : TT)) as the
signature for displayed models. The translation can be typed as Tm (• ▷ (M : TT))TTD: we
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assume a model of the theory, and build a displayed model over the same theory. Informally,
when M is initial, we get a translation which doubles each context:

JΓ ▷ (a : A)K ≡ JΓK ▷ (a : A) ▷ (aD : JAK a)

Formally, however, this is not well-typed because A lives in Γ, not in JΓK. Hence, in the
definition of contexts in the displayed model, we also include a substitution which projects
out the “base” parts of contexts. This can be used to weaken types in base contexts to total
contexts.

Con : ConM → U

ConΓ :≡ Σ (Γ′ : ConM) (proj : SubM Γ′ Γ)

This requires the small Σ-type in ToS. It is possible to rephrase the construction without type
formers in U; again, Example 21 has unary parametricity as a special case. However, the fibered
version has the advantage that contexts are translated to contexts, types to types, and terms
to terms, which makes it more convenient if we actually want to implement it as a program
translation. In contrast, the gluing definition of unary parametricity maps contexts to types.

5.6 Term Algebras

We adapt now the previous term algebra construction to the infinitary case. We again switch
to the ETT setup with cumulative universes. We assume Section 4.4.1 without any change.
Also, we adapt 4.4.2 to infinitary signatures and semantics. All definitions are the same, the
only change is that the Mi,j model is now the isofibrant flcwf model, and we have the infinitary
ToS.

5.6.1 Term Algebra Construction

The term algebra construction changes significantly. The reason is the following. In the finitary
case, the key property was that “small types evaluated in the term model are sets of terms”.
Formally, we had for a : TmΩU that aA (ΩT id) ≡ TmΩ (El a). This is now weakened to an
isomorphism, i.e. aA (ΩT id) ≃ TmΩ (El a).

This is again necessary because of the closure of U under type formers. For example,
⊤A (ΩT id) ≡ ⊤, and TmΩ (El⊤) is merely isomorphic to ⊤. We assume Ω : Sigj for some j
level, and define –T by induction on synj.

–T : (Γ : Con) (ν : SubΩΓ) → ΓA

–T : (σ : SubΓ∆)(ν : SubΩΓ) → ∆T (σ ◦ ν) ≃ σA (ΓT ν)

–T : (A : TyΓ) (ν : SubΩΓ) → TmΩ (A[ν]) → AA (ΓT ν)

–T : (t : TmΓA) (ν : SubΩΓ) → AT ν (t[ν]) ≃id t
A (ΓT ν)

In short, interpretations of substitutions and terms are weakened to isomorphisms. By ≃id we
mean a displayed isomorphism of objects in the semantic A type (which is an flcwf isofibration);
recall Definition 60. The isomorphism is “vertical” since it lies over id.
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The interpretation of the cwf is the same as before, but like in the isofibrant semantics, we
have to use explicit coe instead of silently transporting over equalities. In the interpretations of
substitutions and terms, we have to explicitly compose isomorphisms and sometimes lift them
using coh. We give some examples. The interpretation of context formers is the same as before:

•T ν :≡ tt

(Γ ▷ A)T (ν, t) :≡ (ΓT ν, AT ν t)

Type substitution with σ : SubΓ∆ is interpreted as coercion:

(A[σ])T : (ν : SubΩΓ)(t : TmΩ (A[σ][ν]) → AA (σA (ΓT ν))

(A[σ])T ν t :≡ coe (σT ν) (AT (σ ◦ ν) t)

Composition of σ : Sub∆Ξ and δ : SubΓ∆ is the following:

(σ ◦ δ)T : (ν : SubΩΓ) → ∆T (σ ◦ δ ◦ ν) ≃ σA (δA (ΓT ν))

(σ ◦ δ)T ν :≡ σM (δT ν) ◦ σT (δ ◦ ν)

Above, we have

δT ν : ΞT (δ ◦ ν) ≃ δA (ΓT ν)

σM (δT ν) : σA (ΞT (δ ◦ ν)) ≃ σA (δA (ΓT ν))

σT (δ ◦ ν) : ∆T (σ ◦ δ ◦ ν) ≃ σA (ΞT (δ ◦ ν))

Hence, the type of the composition in the definition checks out. We make use of the fact that
σM sends an isomorphism in Γ to an isomorphism in ∆.

Substitution extension is a somewhat more complicated case. We want to interpret the
extension of σ : SubΓ∆ with t : TmΓ (A[σ]):

(σ, t)T : (ν : SubΩΓ) → (∆ ▷ A)T ((σ, t) ◦ ν) ≃ (σ, t)A (ΓT ν)

The goal is an isomorphism in the semantic Γ ▷ A category, i.e. the total category of A. Every
isomorphism in Γ▷A arises as packing together a Γ isomorphism and a displayed A isomorphism
over it. We can compute the type further:

(σ, t)T : (ν : SubΩΓ) → (∆T (σ ◦ ν), AT (σ ◦ ν) (t[ν])) ≃ (σA (ΓT ν), tA (ΓT ν))

We can exhibit σT ν : ∆T (σ ◦ ν) ≃ σA (ΓT ν) as the base component of the goal isomorphism.
Now we need a displayed isomorphism over it. Following the pattern, we may try tT ν:

tT ν : (A[σ])T ν (t[ν]) ≃id t
A (ΓT ν)

Computing the type:

tT ν : coe (σT ν) (AT (σ ◦ ν) (t[ν])) ≃id t
A (ΓT ν)

So this is not quite what is needed; we want a displayed iso over σT ν, but we have something
over id. We can fix this using coh:

coh (σT ν) (AT (σ ◦ ν) (t[ν])) : AT (σ ◦ ν) (t[ν]) ≃σT ν coe (σT ν) (AT (σ ◦ ν) (t[ν]))
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The composition of tT ν and the above now checks out:

(σ, t)T ν :≡ (σT ν, tT ν ◦ coh (σT ν) (AT (σ ◦ ν) (t[ν])))

We omit the rest of the cwf interpretation. It should be apparent that explicit coe and coh-
handling is fairly technical. We note though that in a proof assistant, the finitary and infinitary
term model constructions would be of similar difficulty, because there we cannot rely on equality
reflection and implicit transports to magically tidy up the formalization. In fact, even in the
finitary case it would be a good idea to structure the formalization around coercions and
coherences.

The high-level explanation for why the weakened constructions continue to work, is the
same as what we gave in the section on iso-fibrant semantics: we do nothing which would
violate stability under isomorphisms; additionally, because our isofibrations are split, coercion
and coherence compute strictly on identities and compositions, which ensures that conversion
equations in the syntax are respected. For example, functoriality of type substitution relies on
coe computation on identity and composition.

Universe

The universe is interpreted as follows.

UT : (ν : SubΩΓ) → TmΩU → Setj+1

UT ν a :≡ TmΩ (El a)

(El a)T : (ν : SubΩΓ)(t : TmΩ (El (a[ν]))) → aA (ΓT ν)

(El a)T ν t :≡ (aT ν) t

In the interpretation of El, note that

aT ν : TmΩ (El (a[ν])) ≃id a
A (Γ ν)

But this is an isomorphism in the semantic U, which is the category of sets in Setj+1. So
coercion along aT ν is simply function application, and we are justified in writing (aT ν) t.

For each type former in U, we have to exhibit an isomorphism of sets in the interpretation.

⊤, Σ

We need

⊤T : (ν : SubΩΓ) → UT ν (⊤[ν]) ≃id ⊤A (ΓT ν)

The result type computes to TmΩ (El⊤) ≃ ⊤, which is evident. For Σ, we have to show

TmΩ (El (Σ (a[ν]) (b[ν ◦ p, q]))) ≃ ((α : aA (ΓT ν))× bA (ΓT ν, α))

This follows from the induction hypotheses aT and bT , which establish the first and second
components of the desired isomorphism.
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Identity

For the identity type, we need

TmΩ (El (Id (t[ν]) (u[ν])) ≃ (tA (ΓT ν) ≡ uA (ΓT ν))

This follows from tT ν, uT ν and the specifying isomorphism of Id.

Small external products

This function type follows the same pattern. We define the isomorphism below using induction
hypotheses and the specifying isomorphism of Πext.

TmΩ (El (Πext Ix (λ i. (b i)[ν]))) ≃ ((i : Ix ) → (b i)A (Γ ν))

Internal products

Inductive functions are interpreted using transport along aT ν : TmΩ (El (a[ν])) ≃ aA (ΓT ν):

(Π aB)T : (ν : SubΩΓ)(t : TmΩ (Π (a[ν]) (B[ν ◦ p, q])))
→ (α : aA (ΓT ν)) → BA (ΓT ν, α)

(Π aB)T ν t :≡ λα.B (ν, (aT ν)−1 α) (t ((aT ν)−1 α))

External products are interpreted the same way as in the finitary case.

5.6.2 Eliminator Construction

We only present the eliminator construction in the following, since (unique) recursors are deriv-
able from this.

Compared to the finitary case, the eliminator construction does not change as much as the
term algebra construction. The reason is that although we have weakened strict algebra equality
to isomorphism, in the current construction we only have to show equalities of substitutions
and terms, which we do not need to weaken (and they cannot be sensibly weakened anyway).

We assume j and k such that j + 1 ≤ k, and also Ω : Sigj and ωD : ΩD
k (ΩT id). Hence, ωD

is a displayed Ω-algebra over the term algebra, and we aim to construct its section. Note that
we lift ΩT id : ΩA

j+1 to level k by cumulativity. We define –E by induction on synj.

–E : (Γ : Con) (ν : SubΩΓ) → ΓS (νA (ΩT id)) (νD ωD)

–E : (σ : SubΓ∆)(ν : SubΩΓ) → ∆E (σ ◦ ν) ≡ σS (ΓE ν)

–E : (A : TyΓ) (ν : SubΩΓ)(t : TmΩ (A[ν])) → AS (tA (ΩT id)) (tD ωD) (ΓE ν)

–E : (t : TmΓA) (ν : SubΩΓ) → AE ν (t[ν]) ≡ tS (ΓE ν)

This is so far exactly the same as in Section 4.4.5. The subsequent changes arise from the need
to transport along –T in definitions.
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Universe

For the universe, we need

UE : (ν : SubΩΓ)(a : TmΩU) → (α : aA (ΩT id)) → aD ωD α

Since we only have aT id : aA (ΩT id) ≃ TmΩ (El a), the definition becomes

UE ν a t :≡ (aT id t)D ωD

That this is well-typed, follows from

((aT id) t)T id : t ≡ ((aT id) t)A (ΩT id)

((aT id) t)D ωD : aD ωD (((aT id) t)A (ΩT id))

For El, we need to show

(El a)E : (ν : SubΩΓ)(t : TmΩ (El (a[ν]))) → aS (ΓE ν) (tA (ΩT id)) ≡ tD ωD

We have

tT id : (a[ν])T id t ≡ tA (ΩT id)

Moreover

aE ν : UE ν (a[ν]) ≡ aS (ΓE ν)

Hence

aE ν : (λ t. ((a[ν])T id t)D ωD) ≡ aS (ΓE ν)

Applying both sides to ((a[ν])T id)−1 t, we have

((a[ν])T id (((a[ν])T id)−1 t))D ωD ≡ aS (ΓE ν) (((a[ν])T id)−1 t)

This simplifies to

tD ωD ≡ aS (ΓE ν) (((a[ν])T id)−1 t)

By (aT id t)T id : t ≡ (aT id t)A (ΩT id) this becomes:

tD ωD ≡ aS (ΓE ν) (((a[ν])T id)−1 ((aT id t)A (ΩT id)))

Thus we have the required

tD ωD ≡ aS (ΓE ν) (ΩT id)

⊤, Σ

For ⊤, we need

⊤E : (ν : SubΩΓ) → UE ν⊤ ≡ ⊤S (ΓE ν)

But this is clearly trivial, since ⊤S (ΓE ν) : ⊤ → ⊤. Considering Σ:

(Σ a b)E : (ν : SubΩΓ) → UE ν (Σ (a[ν]) (b[ν ◦ p, q])) ≡ (Σ a b)S (ΓE ν)
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This case is a bit tedious. The sides above are functions, so appealing to function extensionality
we apply both sides to (α, β), where α : aA (νA (ΩT id)) and β : bA (νA (ΩT id), α). We also
unfold some definitions:

(((Σ (a[ν]) (b[ν ◦ p, q]))T id)−1 (α, β))D ωD ≡ (aS (ΓE ν)α, bS (ΓE ν, refl) β)

Unfolding the left side of this equation, we have

((((a[ν])T id)−1 α)D ωD, (((b[ν ◦ p, q])T (id, ((a[ν])T id)−1 α))−1 β)D ωD)

Let us abbreviate ((a[ν])T id)−1 α : TmΩ (El (a[ν])) as α′:

(α′D ωD, (((b[ν ◦ p, q])T (id, α′))−1 β)D ωD)

Hence, we need to show component-wise equality of pairs. The equality of first components
follow from the following:

aE ν : UE ν (a[ν]) ≡ aS (ΓE ν)

Unfolding definitions and applying both sides to α, we get the equality of first components:

α′D ωD ≡ aS (ΓE ν)α

Analogously, the equality of second components follows from

bE (ν, α′) : (((b[ν, α′])T id)−1 β)D ωD ≡ bS (ΓE ν, refl) β

The right hand side is what we need, the left hand side though does not immediately match
up. Hence, it remains to show that

(((b[ν, α′])T id)−1 β)D ωD ≡ (((b[ν ◦ p, q])T (id, α′))−1 β)D ωD

Thus, it suffices to show
(b[ν, α′])T id ≡ (b[ν ◦ p, q])T (id, α′)

This equation follows from a somewhat laborious unfolding of all involved definitions. In
particular, we use that for some a : TmΓU, we have

(a[σ])T ν ≡ aM (σT ν) ◦ aT (σ ◦ ν)

which follows from the definition of –T .

Internal products

In Π we likewise transport along the domain isomorphism.

(Π aB)E : (ν : SubΩΓ)(t : TmΩ (Π (a[ν]) (B[ν ◦ p, q])))
→ (α : TmΩ (El (a[ν]))) → BS (tA (ΩT id)α) (tD ωD (αD ωD)) (ΓE ν, refl)

(Π aB)E ν t :≡ λα.BE (ν, (a[ν])T idα) (t ((a[ν])T idα))

This is well-typed by the following:

aE ν : ((a[ν])T idα)D ωD ≡ aS (ΓE ν)α

((a[ν])T idα)T id : α ≡ ((a[ν])T idα)A (ΩT id)
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Id, Πext, ΠExt

Id is trivial by UIP, and for Πext and ΠExt we again do a straightforward recursion under the
indexing function.

This concludes the definition of –E. We again show the initiality of term algebras.

Definition 66 (Eliminators). Assuming Ω : Sigj, a k level such that k ≥ j + 1 and ωD :
ΩD

k (ΩT id), we have ΩE id : ΩS (ΩT id)ωD as the eliminator.

Theorem 10. ΩT id : ΩA
j+1 is initial when lifted to any k ≥ j + 1 level.

Proof. ΩT id supports elimination by Definition 66, and elimination is equivalent to initiality
by Theorem 1.

5.7 Levitation and Bootstrapping

In this section we adapt the bootstrapping procedure from Section 4.5 to infinitary signatures.

Bootstrapping for 2LTT semantics

If we only want to write down signatures and get their 2LTT-based semantics, a simplified
bootstrapping suffices, which is essentially the same as in Section 4.5. We write ToSi : Seti+1

for the type of models where underlying sets are in Seti and external indexing is over Ty0. We
also have Mi : ToSi+2 for the flcwf models where underlying sets in algebras are in Seti and
external indexing is over types in Ty0.

Definition 67. The type of bootstrap signatures is defined as follows:

BootSig :≡ (i : Level) → (M : ToSi) → ConM

These bootstrap signatures only allow external indexing by types in Ty0. We can write bootstrap
signatures and interpret them in Mi, by applying them to Mi.

Bootstrapping for term algebras

Now we reuse the ETT setting from Section 4.4.2. We have ToSi,j : Seti+1⊔ j+1 for the type of
models where underlying sets are in Seti and Πext and ΠExt abstract over Setj. We also have
Mi,j : ToS(i+1⊔ j)+1,j as the flcwf models, again with underlying sets of algebras in Seti and
external indexing types in Setj.

Definition 68. The type of bootstrap signatures at level j is defined as follows. These may
contain external indexing by types in Setj.

BootSigj :≡ (i j : Level) → (M : ToSi,j) → ConM
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Definition 69 (Signature for ToS). We define ToSSigj : BootSigj+1 as the bootstrap signa-
ture for ToS, where the described signatures may be indexed by types in Setj. Like in Section
4.5, we use an internal notation. We present an excerpt.

Con : U

Sub : Con → Con → U

Ty : Con → U

Tm : (Γ : Con) → TyΓ → U

...

SigU : {Γ : Con} → El (TyΓ)

SigEl : {Γ : Con} → TmΓ SigU → El (TyΓ)

Πext : {Γ : Con}(A : Setj) →Ext (A →ext TmΓ SigU) → El (TmΓ SigU)

...

Now the interpretation of ToSSigj in Mi,j+1 yields the flcwf where objects are elements of ToSi,j.
Note the level bump: ToSSigj is in BootSigj+1, so we expend one level at each round of self-
description. We get the notion of ToS-induction from Mi,j+1, and we have ToSi,j ≤ ToSi+1,j

(by definition of ToS and the rules of subtyping), which allows us to specify what it means for
a model to support elimination into any universe. Thus we recover all concepts that are used
in the term algebra and eliminator constructions.

5.8 Related Work

This chapter is based on the publication “Large and Infinitary Quotient Inductive-Inductive
Types” [KK20b]. We make the following changes:

• We use 2LTT for the flcwf semantics, while the paper only used the cumulative ETT
setting.

• We add the construction of left adjoints and the signature-based semantics in Sections
5.3-5.4.

• We add small ⊤ and Σ to the ToS, and also their large counterparts in Sections 5.3-5.4.

Recall that we show that arbitrary substitutions have left adjoints. Moeneclaey [Moe21]
describes sufficient conditions to have right adjoints as well: given t : Tm (• ▷ ΓA

sig) Γ
D
sig, we have

the context • ▷ ΓA
tos ▷ Γ

S
tos[id, t], and then the forgetful substitution from this context to • ▷ ΓA

tos

has a right adjoint. The construction that we gave in Example 31 was given with such a t term
as well.

Fiore, Pitts and Steenkamp investigated infinitary QITs in [FPS20] and [FPS21]. They
introduced two signatures for QW and QWI types, which generalize W-types and indexed W-
types respectively. In the latter work, they show that these types can be constructed using the
WISC axiom (weakly initial sets of covers).

Essentially algebraic theories generalize to the infinitary cases in a straightforward way
[AAR+94].



114 5.8. RELATED WORK

Specific examples of infinitary QIITs were introduced in [Uni13], as QIITs for Cauchy real
numbers, surreal numbers, and cumulative set hierarchies. In [ADK17], a partiality monad is
specified as an infinitary QIITs.



CHAPTER 6

Higher Inductive-Inductive Signatures

So far we only considered semantics of signatures where equality constructors are interpreted
as proof-irrelevant equalities, i.e. those satisfying UIP. This inspires the naming of quotient
inductive-inductive signatures. In contrast, higher inductive-inductive signatures are charac-
terized by having possibly proof-relevant and iterated equalities in algebras. The natural setting
of HIITs is homotopy type theory (HoTT) [Uni13], where higher equalities can be manipulated
and constructed in non-trivial ways. We might think of HIITs as generalizations of QIITs, or
alternatively, view QIITs as set-truncated HIITs.

The theory of HII signatures is fairly similar to the theory of infinitary QII signatures. The
main difference is that the internal Id type does not support equality reflection, nor UIP. In fact,
infinitary QII signatures already allow iterated Id, and most HIITs that occur in the literature
can be already expressed using QII signatures. In contrast, the semantics of signatures changes
markedly: the semantic inner theory is now intensional, and Id is interpreted as intensional inner
equality. This may not seem that dramatic, but note that so far we have made very heavy use
of UIP and inner equality reflection in the semantics, and now these are not available.

The more general semantics introduces significant complications. As a result, in the follow-
ing we shall restrict ourselves to the AMDS fragment of the semantics. This is sufficient to
compute what we mean by induction and initiality (which has been called “homotopy initiality”
in the context of HoTT [Soj15]).

Why do not we go further? The main reason is that the natural semantics is actually in
(ω, 1)-categories: we want (ω, 1)-categories of algebras. This requires a different approach and
toolset. In particular, in [KK20a, Section 9] we gave an example that a naive attempt to extend
the AMDS semantics of signatures with the notion of identity morphisms already fails. The
author of this thesis is not versed enough in higher category theory, so we leave the exposition
of the full semantics to future work.

We do note that a higher semantics has been developed by Capriotti and Sattler. See [CS20]
for an abstract; the bulk of the work remains unpublished as of now. In short, Capriotti and
Sattler define the ToS in 2LTT, and also use 2LTT to give a model where signatures are
higher categories, specified as complete Segal types. They show that categories of algebras
have finite limits and that initiality is equivalent to induction. Additionally, the setup yields
a structure identity principle for each signature. However, reductions to simpler type formers
are not discussed, nor possible term algebra constructions. Both of these appear to be far
more difficult than in the quotient setting, and to the author’s knowledge there are no concrete
proposals how to approach them.
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The necessity of 2LTT

2LTT is firmly necessary in the specification of HIITs, and the ToS must live in the outer
layer. The reason is that there is no known way to sensibly internalize the metatheory of type
theories purely inside HoTT. This is the problem of “HoTT eating itself” [Shu14]. It is also
closely related to the problem of representing semisimplicial types in HoTT. If we can construct
semisimplicial types in an embedded type theory, and interpret that into non-truncated HoTT
types, that would indeed solve the problem. But so far it has not been solved, or proven
impossible to solve. A key original motivation for 2LTT was precisely to allow construction of
semisimplicial types [ACKS19].

We give a short summary of the problem; see [KK20a, Section 4] for more discussion. The
goal is to have a notion of model of a dependent type theory in HoTT, such that we have a
standard model where contexts are HoTT types.

We may define the notion of model naively using types and equalities, by having Con : U,
Ty : Con → U, etc. and idl : σ ◦ id = σ. However, this does not yield a well-behaved notion of
syntax. If we define the syntax as HIIT for the above notion (i.e. the initial model), nothing
forces the underlying types to be sets; the HIIT definition freely adds a large number of non-
trivial higher paths. Since the underlying types are not sets, this syntax does not have decidable
equality, by Hedberg’s theorem [Hed98]. This is regardless of what type formers we include.

Alternatively, we may define the notion of model as having homotopy sets for underlying
types. The corresponding HIIT will be in fact a QIIT, where every inductive sort is set-
truncated. While this is better-behaved as syntax, we do not get a standard model. Contexts
in a model cannot be arbitrary types because in HoTT, types (of a universe) do not form a
h-set. In fact, not even h-sets form a h-set; they form a h-groupoid. So we do not get any
reasonable notion of standard interpretation.

2LTT solves this issue in the following way: the embedded syntax is an outer QIIT, and
equations in the syntax are given as strict (outer) equalities. The standard inner type model is
now possible because in that model all equations hold strictly, up to inner definitional equal-
ity. However, this implies that we can only define strict models; this leads to the following
consideration.

Strict vs. weak signatures

We have an important choice in the semantics: homomorphisms (and sections) can preserve
structure strictly, i.e. up to outer equality, or weakly, up to inner equality. This choice has an
impact on the supported ToS features.

• With strict preservation, the semantics does not support an elimination rule for Id. The
problem is that Id is necessarily modeled as inner equality, but we cannot eliminate from
that to outer types, and strict equality is an outer type.

• With weak preservation, we do have elimination for Id. However, the semantics does not
support strict βη rules in Id, Σ, Πext and Π. In short, the problem is that (El a)M and
(El a)S are defined as inner equality types, so we need to use inner path induction in the
semantics of eliminators. This implies that βη-rules also hold only up to inner paths, but
not definitionally. Thus, in the “weak” case, we may have βη only up to internal Id.
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It makes sense to develop both semantics. Weak morphisms and sections are useful because
they can be defined purely in the inner theory (or in HoTT). Strict morphisms and sections
are useful if we want to specify type formers, since type theories usually assume strict β-rules
for recursors and eliminators. In this chapter, we specify theories of signatures and semantics
for both cases.

Metatheory

We work in 2LTT. We assume that Ty0 is closed under Π, Σ, ⊤ and intensional identity – = –.
We assume the “based” path induction principle [Uni13, Section 1.12.1]. Assuming A : Ty0,
x : A and P : (y : A) → x = y → Ty0, we have

JP : P x refl → {y : A}(p : x = y) → P y p

JPβ : JP pr refl ≡ pr

The following operations are defined in the standard way [Uni13, Section 2].

• Path inversion –−1 : x = y → y = x.

• Path composition – �– : x = y → y = z → x = z.

• Assuming P : A → Ty0, we have transport trP : x = y → P x → P y.

• Path lifting ap : (f : A → B) → x = y → f x = f y.

• Dependent path lifting apd : (f : (x : A) → B x) → (p : x = y) → trB p (f x) = f y.

6.1 Strict Signatures

Definition 70. A model of strict ToS is the same as a model of the theory of infinitary
QII signatures, with the following change: the Id type former in U only supports refl, but no
elimination rule or reflection rule.

We assume that the syntax of ToS exists, and a signature is a context in the syntax. We
could use bootstrap signatures as well, without loss of generality, as we will not use actual
induction on signatures in the following, and we will also not discuss fine-grained sizing or
cumulativity of algebras.

Example 32. The circle is one of the simplest higher inductive types [Uni13, Section 6.4]. The
signature is the following.

S1 : U

base : El S1

loop : El (Id base base)

Note that the circle signature is expressible as a QII signature, but in the QII semantics the
loop entry is made trivial by UIP.
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Non-examples

From the HoTT book, all higher-inductive types are supported, except

• The torus [Uni13, Section 6.6], since the specification contains Id composition, which
requires Id elimination.

• The “hubs-and-spokes” HITs [Uni13, Section 6.7]. This involves abstracting over some
external x : S1 (a point of the circle), then referring to a ToS term which is computed by
elimination on x. This is also not permitted in our setup because signature terms live in
the outer theory of 2LTT, and external parameters are in Ty0.

If instead signatures and external parameters lived in the same theory (like in our ETT
setup for term algebra constructions of QIITs), this elimination would be possible. For
HIITs, we cannot do that, since the inner theory cannot reasonably internalize the ToS.

6.1.1 Semantics

For each signature Γ, we wish to compute

ΓA : Set

ΓM : ΓA → ΓA → Set

ΓD : ΓA → Set

ΓS : (γ : ΓA) → ΓD γ → Set

corresponding respectively to algebras, morphisms, displayed algebras and sections. Note that
all of these return in Set. Morphisms and sections in particular are forced to return in Set
because they may contain strict equalities.

The AMDS interpretations can be found in Appendix B in a tabular manner, together with
a listing of ToS components. We discuss these in the following.

In algebras and displayed algebras there is no complication; all equations hold in these
(displayed) models strictly, and we do not use equations from induction hypotheses anywhere.

Inmorphisms, note that all term formers returning in El specify a strict equation. We write
refl in their definition for brevity, which is technically correct (by equality reflection), but the
definitions may involve using the strict equalities from induction hypotheses. ⊤M γM : tt0 ≡ tt0
is trivial, but

(proj1 t)
M γM : aM γM ((proj1 t)

A γ0) ≡ (proj1 t)
A γ1

requires us to use

tM γM : (aM γM ((proj1 t)
A γ0), b

M (γM , refl) ((proj2 t)
A γ1)) ≡ tA γ1

Likewise we use tM γM in the equation for (proj2 t)
M .

Also note that the definition for (Id t u)M γM relies on tM and uM for well-typing. The goal
is

(Id t u)M γM : (Id t u)A γ0 → (Id t u)A γ1

(Id t u)M γM : tA γ0 = uA γ0 → tA γ0 = uA γ1
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Assuming p : tA γ0 = uA γ0, we have ap (aM γM) p : aM γM (tA γ0) = aM γM (uA γ0), so we
rewrite the sides along tM γM : aM γM (tA γ0) ≡ tA γ1 and uM γM . The ap application must
stay explicit in the definition, since inner equalities can be proof-relevant.

We also demonstrate the failure of Id elimination. It is enough to show that Id inversion
fails. This would entail the following in the ToS:

–−1 : TmΓ (El (Id t u)) → TmΓ (El (Idu t))

In the –M interpretation, we would need to show

(p−1)M γM : ap (aM γM) ((p−1)A γ0) ≡ ((p−1)A γ1)

(p−1)M γM : ap (aM γM)
(
(pA γ0)

−1) ≡ (pA γ1)
−1

We have pM γM : ap (aM γM) (pA γ0) ≡ pA γ1, so we would need to show

ap (aM γM)
(
(pA γ0)

−1) ≡ (ap (aM γM) (pA γ0))
−1

This is not provable in 2LTT; it is false as a universal statement in the initial model (syntax)
of the inner theory. It holds in the empty context, where both sides are necessarily equal to
refl by canonicity, but not in arbitrary contexts. It does hold as an inner equality, by induction
on pA γ0.

Sections are a mostly mechanical generalization of morphisms, where the codomain de-
pends on the domain. Note that the (Id t u)D definition is a path-over-path, and accordingly
we have apd instead of ap in (Id t u)S.

Definition 71. For some Γ signature, notions of initiality and induction are as follows.

Initial (γ : ΓA) :≡ (γ′ : ΓA) → isContr (ΓM γ γ′)

Inductive (γ : ΓA) :≡ (γD : ΓD γ) → ΓS γ γD

This is the same as Definition 43, except we do not have an flcwf of algebras, so do not have
properties that are evident in an flcwf, such as Theorems 1 and 2.

Example 33. For the circle signature S1Sig, we have the following (disregarding the leading
⊤ components):

S1SigA ≡ (S1 : Ty0)× (base : S1)× (loop : base = base)

S1SigD (S1, loop, base) ≡
(S1D : S1 → Ty0)

× (baseD : S1D base)

× (loopD : trS1D loop baseD = baseD)

S1SigS (S1, loop, base) (S1D, loopD , baseD) ≡
(S 1S : (s : S1) → S1D s)

× (baseS : S 1S base ≡ baseD)

× (loopS : apd S 1S loop ≡ loopD)
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The computed induction principles are close to what we find in [Uni13]. The difference is
that β-rules for path constructors are strict, while in ibid. they are up to propositional equality.
One reason for choosing weak β-rules for paths is that we have ap and apd applications on
the left sides of such rules, and it is unconventional to definitionally specify the behavior of
operations which are derived from J. In cubical type theories, path β-rules are specified in a
more primitive way, so strict computation is more organic.

Currently, we have semantics in intensional inner theories, but it would be possible to do
the same in cubical inner theories. Intensional TT is clearly much simpler, and has a wider
variety of known models. On the other hand, cubical type theories support strictly computing
transports, so it is possible that they would support stricter ToS β-rules in the case of the
“weak” semantics. We leave this to possible future work.

6.2 Weak Signatures

Metatheory

On top of what we had so far in this chapter, we assume strong function extensionality in
the inner theory: this means that for each f, g : (a : A) → B a, the following function is an
equivalence.

happly : (f = g) → ((a : A) → f a = g a)

happly p a :≡ ap (λ f. f a) p

funext is obtained as the inverse of happly. This definition, unlike the simple assumption of
funext, is well-behaved in intensional settings [Uni13, Section 2.9].

Moreover, we assume two universes U0 and U1, such that U0 ≤ U1 ≤ Ty0. We use this to
develop semantics which is entirely in the inner theory: if algebra sorts are in U0, we need an
U1 on top of that to accommodate types of algebras.

Definition 72. A model of weak ToS consists of a base cwf (with Con, Sub, Ty and Tm
returning in Set) extended with certain type formers. We omit all substitution rules in the
following. As before, substitution rules are given with strict equality. We list type formers
below.

• A “large” identity type ID : TmΓA → TmΓA → TyΓ, with the following rules:

refl : TmΓ (ID t t)

J : {t : TmΓA}(P : Ty (Γ ▷ (u : A) ▷ (p : ID t u)))

→ TmΓ (P [u 7→ t, p 7→ refl])

→ {u : TmΓA}(p : TmΓ (ID t u)) → TmΓ (P [u 7→ u, p 7→ p])

Jβ : J b pr refl ≡ pr

Notation 22. We may use a name binding notation in the induction motive for J. For
example, assuming A : TyΓ, B : Ty (Γ ▷ A), p : TmΓ (ID t u) and pt : TmΓ (B[id, t]), we
may define transport along p as

J (x p.B[id, x]) pt p : TmΓ (B[id, u])

where x p. binds the term and path dependencies of the induction motive.
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• A universe U with decoding El.

• U is closed under a “small” identity type Id : TmΓ (El a) → TmΓ (El a) → TmΓU, with
elimination principle J targeting any type (not just types in U!). The β-rule is specified
with ID.

refl : TmΓ (El (Id t t))

J : {t : TmΓ (El a)}(P : Ty (Γ ▷ (u : El a) ▷ (p : El (Id t u))))

→ TmΓ (P [u 7→ t, p 7→ refl])

→ {u : TmΓ (El a)}(p : TmΓ (El (Id t u))) → TmΓ (P [u 7→ u, p 7→ p])

Jβ : TmΓ (ID (J b pr refl) pr)

• U is also closed under ⊤, Σ, and Πext. All of these are specified with equivalences up to
ID. These are equivalences in the sense of HoTT [Uni13, Chapter 4]. There are several
equivalent formulations of equivalence; we pick the bi-invertible definitions here. For ⊤, it
is enough to have a simplified specification as ⊤η : TmΓ (ID t tt). Σ is specified as follows.

–,– : (t : TmΓ (El a))× TmΓ (El (b[id, t])) → TmΓ (El (Σ a b))

proj : TmΓ (El (Σ a b)) → (t : TmΓ (El a))× TmΓ (El (b[id, t]))

proj′ : TmΓ (El (Σ a b)) → (t : TmΓ (El a))× TmΓ (El (b[id, t]))

β1 : TmΓ (ID (proj1 (t, u)) t)

β2 : TmΓ (ID ((J (x . (El b)[id, x]) (proj2 (t, u)) β1)u))

η : TmΓ (ID (proj′1 t, proj
′
2 t) t)

We write proji and proj′i for composing metatheoretic projections with ToS projections.
The additional proj′ component is required to get a bi-invertible equivalence. Also note
that β2 is only well-typed up to β1, so we need to use a transport in the specification.

Πext : (Ix : U0) → (Ix → TmΓU) → TmΓU is specified below.

appext : TmΓ (El (Πext Ix b)) → ((i : Ix ) → TmΓ (El (b i)))

lamext : ((i : Ix ) → TmΓ (El (b i))) → TmΓ (El (Πext Ix b))

lamext′ : ((i : Ix ) → TmΓ (El (b i))) → TmΓ (El (Πext Ix b))

β : TmΓ (ID (appext (lamext t) i) (t i))

η : TmΓ (ID (lamext′ (appext t)) t)

Why have equivalences in the specification of models, would it be enough to have isomor-
phisms? We choose equivalences because they yield better-behaved models, and they do
not make it any harder to construct models, since we can always construct the required
equivalences from isomorphisms [Uni13, Chapter 4].

• Internal product type Π : (a : TmΓU) → Ty (Γ ▷ El a) → TyΓ, with the specifying
equivalence given up to ID, analogously as for Σ and Πext:

(app, lam, lam′) : TmΓ (Π aB) ≃ Tm (Γ ▷ El a)B
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• External product type ΠExt : (Ix : U0) → (Ix → TyΓ) → TyΓ, specified as a strict Set
isomorphism:

(appExt, lamExt) : TmΓ (ΠExt Ix B) ≃ ((i : Ix ) → TmΓ (B i))

To give a short summary of changes compared to strict signatures:

1. Types are closed under an extra ID type former which has a strict β-rule.

2. We can eliminate from Id to proper types, but with a weak β-rule.

3. Σ and Πext support eliminators, but with weak β-rules.

Example 34. The torus is now expressible thanks to path elimination in signatures. We define
– �– as path composition for Id in the evident way.

T2 : U

b : El T2

p : El (Id b b)

q : El (Id b b)

t : El (Id (p � q) (q � p))

We could also use ID instead of Id and get equivalent semantics.

Example 35. The ID type lets us express “sort equivalences”. For example, a signature for
integers can be compactly written as follows [AS20]:

Int : U

zero : El Int

p : ID Int Int

We get the suc constructor by coercing along p, and predecessors by coercing backwards.
Recall that in Chapter 5 we dropped sort equations because of their non-fibrancy in the

semantics. In contrast, there is no issue with sort equations here. Sort equations simply become
inner paths between types in the semantics; if we assume univalence in the inner theory, such
paths are equivalent to type equivalences. Hence, sort equations in HIITs can be viewed as
shorthands for sort equivalences. Without sort equations, it is still possible to write equivalences
in signatures, using any of the standard definitions [Uni13, Chapter 4].

6.2.1 Semantics

We do not repeat the tables for the strict ToS semantics in Appendix B, as much of it remains
essentially the same in the weak case. We consider the components of the model in order,
highlighting relevant changes and points of interest.

Notation 23. We may omit induction motives in tr and J in the following, as they will often
get excessively verbose. So we may write tr p px : P y for p : x = y and px : P x, and use J pr p
similarly.
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Cwf

A notable change here is that the entirety of the semantics is now in the inner theory. This
means that the interpretation functions of contexts and types all return in U1, e.g. Γ

A : U1 and
ΓM : ΓA → ΓA → U1. Accordingly, we use type formers in U1 to interpret structure in the base
cwf, e.g. ⊤A :≡ ⊤, where the ⊤ on the right is in U1. The only change though is the move from
Set to U1, all definitions are essentially the same.

ID

The new ID type former is interpreted as pointwise equality of semantic terms. We assume
t, u : TmΓA.

(ID t u)A γ :≡ tA γ = uA γ

(ID t u)M p0 p1 γ
M :≡ tr p1 (tr p0 (t

M γM)) = uM γM

(ID t u)D p γD :≡ tr(λx.AD x γD) p (t
D γD) = uD γD

(ID t u)S p pD γS :≡ tr pD (J (tS γS) p) = uS γS

Above, we dropped induction motives in tr and J in –M and –S. For illustration, the more
explicit definitions are:

(ID t u)M p0 p1 γ
M :≡

tr(λx.AM x (tA γ1) γM ) p1 (tr(λx.AM (tA γ1)x γM ) p0 (t
M γM)) = uM γM

(ID t u)S p pD γS :≡
tr(λx.AS x (uA γ) γS) p

D

(J(λ y p.AS y (tr
(λx.AD xγD)

p (tD γD))) (t
S γS) p) = uS γS

From now on, we shall generally avoid this amount of detail in motives.
refl is interpreted as pointwise refl-s:

reflA :≡ refl

reflM :≡ refl

reflD :≡ refl

reflS :≡ refl

Let us look at J for ID now. It is helpful to temporarily consider a bundled AMDS model
instead of the four interpretation maps. Then, we have the following equivalence up to – = –:

TmAMDS Γ (IDAMDS t u) ≃ (t = u)

This follows from function extensionality and the characterization of equivalence for inner
Σ [Uni13, Section 2.7]. Thus, semantic ID is the same as equality of semantic terms. It follows
that everything in the inner theory respects ID, so we can certainly define the semantic J for
ID.
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The actual definition of J involves doing induction on all paths that are available as induction
hypotheses.

(JP pr p)A γ :≡ J (prA γ) (pA γ)

(JP pr p)M γM :≡ J (J (J (prM γM) (pA γ1)) (p
A γ0)) (p

M γM)

(JP pr p)D γD :≡ J (J (prD γD) (pA γ)) (pD γD)

(JP pr p)S γS :≡ J (J (J (prS γS) (pA γ)) (pD γD)) (pS γS)

The strict β-rule for J is supported, as the above definition computes everywhere when p is refl.

Universe

We have the following changes. First, the interpretations of U now return in U0:

UA γ :≡ U0

UD a γD :≡ a → U0

Second, in El, morphisms and sections are given by inner equality:

(El a)M α0 α1 γ
M :≡ aM γM α0 = α1

(El a)M ααD γD :≡ aS γS α = αD

Id

In this identity type, –A and –D are pointwise equality as usual, and –M and –S complete
squares of equalities. We assume t, u : TmΓ (El a).

(Id t u)A γ :≡ tA γ = uA γ

(Id t u)M γM :≡ λ (p : tA γ0 = uA γ0). (t
M γM)−1 � ap (aM γM) p � uM γM

(Id t u)D γD :≡ λ (p : tA γ = uA γ). tr(aD γD) (t
D γD) = uD γD

(Id t u)S γS :≡ λ (p : tA γ = uA γ). ap (tr(aD γD) p) (t
S γS)−1 � apd (aS γS) p � uS γS

We have reflA :≡ refl and reflD :≡ refl. For reflM γM , the goal type is

(tM γM)−1 � tM γM = refl

which is one of the groupoid laws for paths [Uni13, Section 2.1]. We have a more dependent
variant as goal type for reflS γS:

ap (λx. x) (tS γS)−1 � tS γS = refl

This again follows from groupoid laws and the functoriality of ap.
It is still the case that TmAMDS Γ (ElAMDS (IdAMDS t u)) ≃ (t = u) up to – = –. Although

(Id t u)M and (Id t u)S do not express equality of t and u, we do get the component-wise equalities
if we apply El. We have that

(El (Id t u))M p0 p1 γ
M ≡ ((tM γM)−1 � ap (aM γM) p0 � u

M γM = p1)
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We can rearrange the definition to make it more apparent that this is an equality of tM γM and
uM γM , which is well-typed up to p0 and p1.

ap (aM γM) p0 � u
M γM = tM γM � p1

Thus, we can again expect that J is definable for Id. However, the actual definitions get highly
technical in the –M and –S cases, as we have to repeatedly transport along higher paths to
make certain eliminations well-typed. We refer the reader to the Agda formalization [Kov22b]
for these definitions. In the –A and –D cases, the definitions are simple enough:

(JP pr p)A γ :≡ J (prA γ) (pA γ)

(JP pr p)D γD :≡ J (J (prD γD) (pA γ)) (pD γD)

Regarding the β-rule, note that reflM and reflS are not defined as refl, but rather by induction
on tM γM and tS γS. Therefore, if we apply J to refl, the –M and –S components do not strictly
compute.

⊤

⊤ is unchanged. ttM and ttS could possibly change (since El has changed, and tt : TmΓ (El⊤)),
but they are still definable with refl-s.

Σ

Pairing and the projections change in Σ; now their –M and –S cases return proof-relevant inner
equalities. In pairing, we do path induction on hypotheses:

(t, u)M γM :≡ J (J refl (tM γM)) (uM γM)

(t, u)S γS :≡ J (J refl (tS γS)) (uS γS)

In proj1, we use ap proj1 on path hypotheses:

(proj1 t)
M γM :≡ ap proj1 (t

M γM)

(proj1 t)
S γS :≡ ap proj1 (t

S γS)

In proj2, the definitions could be given using apd proj2, but the result type does not immediately
line up, so we can just do direct path induction.

(proj2 t)
M γM :≡ J refl (tM γM)

(proj2 t)
S γS :≡ J refl (tS γS)

proj′1 and proj′2 (required by the bi-invertible specification) are defined the same way. We do
not have strict βη-rules. For example:

(proj1 (t, u))
M γM ≡ ap proj1 (J (J refl (t

M γM)) (uM γM)) ̸≡ tM γM

We still get (proj1 (t, u))
M γM = tM γM by path induction on tM γM and uM γM , and similarly

in other cases, so Σ in the ToS does support the specifying equivalence.
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Πext

Again, the –M and –S cases change in term formers. Application is given by happly:

(appext t i)M γM :≡ happly (tM γM) i

(appext t i)S γS :≡ happly (tS γS) i

Abstraction is by funext:

(lamext t)M γM :≡ funext (λ i. (t i)M γM)

(lamext t)S γS :≡ funext (λ i. (t i)S γS)

Thus, weak βη-rules for Πext follow from strong function extensionality.

Π

We need to use explicit path induction in appM and appS:

(app t)M (γM , αM) :≡ J (tM γM α0)α
M where αM : aM γM α0 = α1

(app t)S (γS, αS) :≡ J (tS γS α)αS where αS : aS γS α = αD

In contrast, lam does not change. βη-rules are given by replaying the path inductions on appM

and appS.

ΠExt

The interpretation of ΠExt is unchanged. This concludes the AMDS semantics of weak signa-
tures.

6.3 Discussion & Related Work

6.3.1 Evaluation

The main advantage of the signatures in the current chapter is their generality. We cover almost
every higher inductive definition in the literature, and do so in a direct manner, with minimal
encoding overhead.

It is also possible to mechanically check validity of signatures and compute AMDS inter-
pretations. The current author has written a Haskell program which takes as input a weak
HII signature, and outputs ADS interpretations as well-formed Agda source code [Kov20]. The
syntax is a bit more restricted than what we have in this chapter, and the program does not
compute morphisms; but it is clear that the deficiencies would be straightforward to patch up.

On the other hand, we note that our semantics is in a minimal intensional theory, a fragment
of the “book” version of homotopy type theory. This setting supports neither computational
univalence nor computational higher inductive types. If our goal is to add computationally
adequate HIITs to a theory (and eventually to its implementation), the current chapter is not
immediately applicable. As we mentioned in Section 4.3.4, in a cubical setting we would need
to reformulate both signatures and semantics. However, the current work should be still helpful
as a guideline, and a provide a point of comparison and validation.
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6.3.2 Related Work

This chapter is based on “A Syntax for Higher Inductive-Inductive Types” [KK18] and “Signa-
tures and Induction Principles for Higher Inductive-Inductive Types” [KK20a], both by Ambrus
Kaposi and the current author. The latter is an extended journal version of the former. In this
chapter, we extend and refine these sources in the following ways.

• We use 2LTT. In the papers, we instead used a custom syntactic translation: the theory
of signatures was an ad hoc mixture of the inner and outer theory, and the AMDS
interpretations were syntactic translations targeting the inner theory. The setup turns
out to be mostly the same as here; but 2LTT brings a lot of clarity and convenience.

• We add the strict/weak signature distinction. The papers only considered weak signatures
and semantics.

• We improve on the specification of signatures. The papers had a small Id type with
elimination only to U, not to arbitrary types. The journal version also had a second
identity type, but only for sort equations, i.e. it expressed only equality of inhabitants of
U.

The small and large identity types in this chapter are more expressive; the weaker defini-
tions in the paper were just oversights.

The papers also omitted eliminators of type formers in weak signatures, and thus their
βη rules, and they did not have ⊤ or Σ. However, this was done mostly for the sake of
brevity, as these extra features are not really used in any HIIT signature in the literature.
It makes more sense to include the extras here, to match infinitary QII signatures as much
as possible.

The homotopy type theory book [Uni13] introduced numerous higher inductive types and
developed their use cases, but it did not give a theory of signatures, nor discussed semantics.

Sojakova [Soj15] specified a class of HITs called W-suspensions (building on W-types), and
proved the equivalence of induction and homotopy initiality, working internally to an intensional
type theory.

Lumsdaine and Shulman gave a general specification of models of type theories supporting
higher inductive types [LS]. They gave a more semantic specification of algebras, as algebras
of a cell monad, and characterized the class of models which support initial algebras. They did
not cover indexed families or induction-induction.

Dybjer and Moeneclaey [DM18] gave signatures for class of finitary HITs with up to 2-
dimensional path constructors, and built semantics in groupoids.

Coquand, Huber and Mörtberg [CHM18] specified syntax for a cubical type theory which
supports several HITs (sphere, torus, suspensions, truncations, pushouts) and built semantics
in cubical sets.

Cavallo and Harper [CH19] specify HITs which support indexed families and arbitrary higher
paths, although not induction-induction. They provide semantics in a PER (partial equivalence
relation) realizability setting.

Cubical Agda [VMA21] is the principal proof assistant which natively supports computa-
tional univalence and HITs. Its implementation of pattern matching, mutual inductive def-
initions, termination checking and strict positivity checking yields of a large class of higher
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inductive-inductive types. However, there is no compact theory of signatures (valid specifica-
tions fall out from positivity/termination checking) nor a categorical semantics.



APPENDIX A

AMDS interpretation of FQII signatures

This appendix supplements Chapter 4. It contains the AMDS interpretation for finitary QII
signatures. We omit substitution and βη-rules. We also omit the Tm0 decoding operation of
two-level type theory.
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Components of ToS (without substitution and βη-rules)

Con : Set

Sub : Con → Con → Set

Ty : Con → Set

Tm : (Γ : Con) → TyΓ → Set

• : Con

ϵ : SubΓ •

id : SubΓΓ

–◦– : Sub∆Ξ → SubΓ∆ → SubΓΞ

–[–] : Ty∆ → SubΓ∆ → TyΓ

–[–] : Tm∆A → (σ : SubΓ∆) → TmΓ (A[σ])

p : Sub (Γ ▷ A) Γ

q : Tm (Γ ▷ A) (A[p])

(–,–) : (σ : SubΓ∆) → TmΓ (A[σ]) → SubΓ (∆ ▷ A)

U : TyΓ

El : TmΓU → TyΓ

Id : TmΓA → TmΓA → TyΓ

refl : TmΓ (Id t t)

reflect : TmΓ (Id t u) → t ≡ u

Π : (a : TmΓU) → Ty (Γ ▷ El a) → TyΓ

app : TmΓ (Π aB) → Tm (Γ ▷ El a)B

lam : Tm (Γ ▷ El a)B → TmΓ (Π aB)

ΠExt : (Ix : Ty0) → (Ix → TyΓ) → TyΓ

appExt : TmΓ (ΠExt Ix B) → (i : Ix ) → TmΓ (B i)

lamExt : ((i : Ix ) → TmΓ (B i)) → TmΓ (ΠExt Ix B)
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Algebras

–A : Con → Set

–A : SubΓ∆ → ΓA → ∆A

–A : TyΓ → ΓA → Set

–A : TmΓA → (γ : ΓA) → AA γ

•A :≡ ⊤
ϵA γ :≡ tt

idA γ :≡ γ

(σ ◦ δ)A γ :≡ σA (δA γ)

(Γ ▷ A)A :≡ (γ : ΓA)× AA γ

(A[σ])A γ :≡ AA (σA γ)

(t[σ])A γ :≡ tA (σA γ)

pA (γ, α) :≡ γ

qA (γ, α) :≡ α

(σ, t)A γ :≡ (σA γ, tA γ)

UA γ :≡ Ty0

(El a)A γ :≡ aA γ

(Id t u)A γ :≡ tA γ ≡ uA γ

reflA γ :≡ refl : tA γ ≡ tA γ

(reflect p)A :≡ funext (λ γ. pA γ)

(Π aB)A γ :≡ (α : aA γ) → BA (γ, α)

(app t)A (γ, α) :≡ tA γ α

(lam t)A γ :≡ λα. tA (γ, α)

(ΠExt Ix B)A γ :≡ (i : Ix ) → (B i)A γ

(appExt t i)A γ :≡ tA γ i

(lamExt t)A γ :≡ λ i. (t i)A γ
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Morphisms

–M : (Γ : Con) → ΓA → ΓA → Set

–M : (σ : SubΓ∆) → ΓM γ0 γ1 → ∆M (σA γ0) (σ
A γ1)

–M : (A : TyΓ) → AA γ0 → AA γ1 → ΓM γ0 γ1 → Set

–M : (t : TmΓA) → (γM : ΓM γ0 γ1) → AM (tA γ0) (t
A γ1) γ

M

•M γ0 γ1 :≡ ⊤
ϵM γM :≡ tt

idM γM :≡ γM

(σ ◦ δ)M γM :≡ σM (δM γM)

(Γ ▷ A)M (γ0, α0) (γ1, α1) :≡ (γM : ΓM γ0 γ1)× AM α0 α1 γ
M

(A[σ])M α0 α1 γ
M :≡ AM α0 α1 (σ

M γM)

(t[σ])M γM :≡ tM (σM γM)

pM (γM , αM) :≡ γM

qM (γM , αM) :≡ αM

(σ, t)M γM :≡ (σM γM , tM γM)

UM a0 a1 γ
M :≡ a0 → a1

(El a)M α0 α1 γ
M :≡ aM γM α0 ≡ α1

(Id t u)M p0 p1 γ
M :≡ tM γM ≡ uM γM

reflM γM :≡ refl : tM γM ≡ tM γM

(reflect p)M :≡ funext (λ γM . pM γM)

(Π aB)M t0 t1 γ
M :≡ (α : aA γ0) → BM (t0 α) (t1 (a

M γM α)) (γM , refl)

(app t)M (γM , αM) :≡ tM γM α0 where αM : aM γM α0 ≡ α1

(lam t)M γM :≡ λα. tM (γM , refl) where refl : aM γM α ≡ aM γM α

(ΠExt Ix B)M t0 t1 γ
M :≡ (i : Ix ) → (B i)M (t0 i) (t1 i) γ

M

(appExt t i)M γM :≡ tM γM i

(lamExt t)M γM :≡ (t i)M γM
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Displayed algebras

–D : (Γ : Con) → ΓA → Set

–D : (σ : SubΓ∆) → ΓD γ → ∆D (σA γ)

–D : (A : TyΓ) → AA γ → ΓD γ → Set

–D : (t : TmΓA) → (γD : ΓD γ) → AD (tA γ) γD

•D γ :≡ ⊤
ϵD γD :≡ tt

idD γD :≡ γD

(σ ◦ δ)D γD :≡ σD (δD γD)

(Γ ▷ A)D (γ, α) :≡ (γD : ΓD γ)× AD α γD

(A[σ])D α γD :≡ AD α (σD γD)

(t[σ])D γD :≡ tD (σD γD)

pD (γD, αD) :≡ γD

qD (γD, αD) :≡ αD

(σ, t)D γD :≡ (σD γD, tD γD)

UD a γD :≡ a → Ty0

(El a)D t γD :≡ aD γD t

(Id t u)D γD :≡ tD γD ≡ uD γD

reflD γD :≡ refl : tD γD ≡ tD γD

(reflect p)D :≡ funext (λ γD. pD γD)

(Π aB)D t γD :≡ {α : aA γ}(αD : aD γD α) → BD (t α) (γD, αD)

(app t)D (γD, αD) :≡ tD γD αD

(lam t)D γD :≡ λ {α}αD. tD (γD, αD)

(ΠExt Ix B)D t γD :≡ (i : Ix ) → (B i)D (t i) γD

(appExt t i)D γD :≡ tD γD i

(lamExt t)D γ :≡ λ i. (t i)D γD
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Sections

–S : (Γ : Con) → (γ : ΓA) → ΓA γ → Set

–S : (σ : SubΓ∆) → ΓS γ γD → ∆S (σA γ) (σD γD)

–S : (A : TyΓ) → AA γ → AD γD → ΓS γ γD → Set

–S : (t : TmΓA) → (γS : ΓS γ γD) → AS (tA γ) (tD γD) γS

•S γ γD :≡ ⊤
ϵS γS :≡ tt

idS γS :≡ γS

(σ ◦ δ)S γS :≡ σS (δS γS)

(Γ ▷ A)S (γ, α) (γD, αD) :≡ (γS : ΓS γ γD)× AS ααD γS

(A[σ])S ααD γS :≡ AS ααD (σS γS)

(t[σ])S γS :≡ tS (σS γS)

pS (γS, αS) :≡ γS

qS (γS, αS) :≡ αS

(σ, t)S γS :≡ (σS γS, tS γS)

US a aD γS :≡ (α : a) → aD α

(El a)S ααD γS :≡ aS γS α ≡ αD

(Id t u)S p pD γS :≡ tS γS ≡ uS γS

reflS γS :≡ refl : tS γS ≡ tS γS

(reflect p)S :≡ funext (λ γS. pS γS)

(Π aB)S t tD γS :≡ (α : aA γ) → BS (t α) (tD (aS γS α)) (γS, refl)

(app t)S (γS, αS) :≡ tS γS α where αS : aS γS α ≡ αD

(lam t)S γS :≡ λα. tS (γS, refl) where refl : aS γS α ≡ aS γS α

(ΠExt Ix B)S t tD γS :≡ (i : Ix ) → (B i)S (t i) (tD i) γS

(appExt t i)S γS :≡ tS γS i

(lamExt t)S γS :≡ (t i)S γS
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AMDS interpretation of strict HII signatures

This appendix supplements Chapter 6. It contains the AMDS interpretation for strict HII
signatures. We omit substitution and βη-rules. We also omit the Tm0 decoding operation of
two-level type theory.
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Components of ToS (without equations)

Con : Set

Sub : Con → Con → Set

Ty : Con → Set

Tm : (Γ : Con) → TyΓ → Set

• : Con

ϵ : SubΓ •

id : SubΓΓ

–◦– : Sub∆Ξ → SubΓ∆ → SubΓΞ

–[–] : Ty∆ → SubΓ∆ → TyΓ

–[–] : Tm∆A → (σ : SubΓ∆) → TmΓ (A[σ])

p : Sub (Γ ▷ A) Γ

q : Tm (Γ ▷ A) (A[p])

(–,–) : (σ : SubΓ∆) → TmΓ (A[σ]) → SubΓ (∆ ▷ A)

U : TyΓ

El : TmΓU → TyΓ

⊤ : TmΓU

tt : TmΓ (El⊤)

Σ : (a : TmΓU) → Tm (Γ ▷ El a)U → TmΓU

proj1 : TmΓ (El (Σ a b)) → TmΓ (El a)

proj2 : (t : TmΓ (El (Σ a b))) → TmΓ (El (b[id, proj1 t]))

(–,–) : (t : TmΓ (El a)) → TmΓ (El (b[id, t])) → TmΓ (El (Σ a b))

Id : TmΓ (El a) → TmΓ (El a) → TmΓU

refl : TmΓ (El (Id t t))

Πext : (Ix : Ty0) → (Ix → TmΓU) → TmΓU

appext : TmΓ (El (Πext Ix b)) → (i : Ix ) → TmΓ (El (b i))

lamext : ((i : Ix ) → TmΓ (El (b i))) → TmΓ (El (Πext Ix b))

Π : (a : TmΓU) → Ty (Γ ▷ El a) → TyΓ

app : TmΓ (Π aB) → Tm (Γ ▷ El a)B

lam : Tm (Γ ▷ El a)B → TmΓ (Π aB)

ΠExt : (Ix : Ty0) → (Ix → TyΓ) → TyΓ

appExt : TmΓ (ΠExt Ix B) → (i : Ix ) → TmΓ (B i)

lamExt : ((i : Ix ) → TmΓ (B i)) → TmΓ (ΠExt Ix B)



APPENDIX B. AMDS INTERPRETATION OF STRICT HII SIGNATURES 137

Algebras

–A : Con → Set

–A : SubΓ∆ → ΓA → ∆A

–A : TyΓ → ΓA → Set

–A : TmΓA → (γ : ΓA) → AA γ

•A :≡ ⊤
ϵA γ :≡ tt

idA γ :≡ γ

(σ ◦ δ)A γ :≡ σA (δA γ)

(Γ ▷ A)A :≡ (γ : ΓA)× AA γ

(A[σ])A γ :≡ AA (σA γ)

(t[σ])A γ :≡ tA (σA γ)

pA (γ, α) :≡ γ

qA (γ, α) :≡ α

(σ, t)A γ :≡ (σA γ, tA γ)

UA γ :≡ Ty0

(El a)A γ :≡ aA γ

⊤A γ :≡ ⊤0

ttA γ :≡ tt0

(Σ a b)A γ :≡ (α : aA γ)×0 b
A (γ, α)

(proj1 t)
A γ :≡ proj1 (t

A γ)

(proj2 t)
A γ :≡ proj2 (t

A γ)

(t, u)A γ :≡ (tA γ, uA γ)

(Id t u)A γ :≡ tA γ = uA γ

reflA γ :≡ refl : tA γ = tA γ

(Πext Ix b)A γ :≡ (i : Ix ) → (b i)A γ

(appext t i)A γ :≡ tA γ i

(lamext t)A γ :≡ λ i. (t i)A γ

(Π aB)A γ :≡ (α : aA γ) → BA (γ, α)

(app t)A (γ, α) :≡ tA γ α

(lam t)A γ :≡ λα. tA (γ, α)

(ΠExt Ix B)A γ :≡ (i : Ix ) → (B i)A γ

(appExt t i)A γ :≡ tA γ i

(lamExt t)A γ :≡ λ i. (t i)A γ
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Morphisms

–M : (Γ : Con) → ΓA → ΓA → Set

–M : (σ : SubΓ∆) → ΓM γ0 γ1 → ∆M (σA γ0) (σ
A γ1)

–M : (A : TyΓ) → AA γ0 → AA γ1 → ΓM γ0 γ1 → Set

–M : (t : TmΓA) → (γM : ΓM γ0 γ1) → AM (tA γ0) (t
A γ1) γ

M

•M γ0 γ1 :≡ ⊤
ϵM γM :≡ tt

idM γM :≡ γM

(σ ◦ δ)M γM :≡ σM (δM γM)

(Γ ▷ A)M (γ0, α0) (γ1, α1) :≡ (γM : ΓM γ0 γ1)× AM α0 α1 γ
M

(A[σ])M α0 α1 γ
M :≡ AM α0 α1 (σ

M γM)

(t[σ])M γM :≡ tM (σM γM)

pM (γM , αM) :≡ γM

qM (γM , αM) :≡ αM

(σ, t)M γM :≡ (σM γM , tM γM)

UM a0 a1 γ
M :≡ a0 → a1

(El a)M α0 α1 γ
M :≡ aM γM α0 ≡ α1

⊤M γM :≡ λ . tt0

ttM γM :≡ refl

(Σ a b)M γM :≡ λ (α, β). (aM γM α, bM (γM , refl) β)

(proj1 t)
M γM :≡ refl

(proj2 t)
M γM :≡ refl

(t, u)M γM :≡ refl

(Id t u)M γM :≡ λ (p : tA γ0 = uA γ0). ap (a
M γM) p

reflM γM :≡ refl

(Πext Ix b)M γM :≡ λ t i. (b i)M γM (t i)

(appext t i)M γM :≡ refl

(lamext t)M γM :≡ refl

(Π aB)M t0 t1 γ
M :≡ (α : aA γ0) → BM (t0 α) (t1 (a

M γM α)) (γM , refl)

(app t)M (γM , αM) :≡ tM γM α0 where αM : aM γM α0 ≡ α1

(lam t)M γM :≡ λα. tM (γM , refl) where refl : aM γM α ≡ aM γM α

(ΠExt Ix B)M t0 t1 γ
M :≡ (i : Ix ) → (B i)M (t0 i) (t1 i) γ

M

(appExt t i)M γM :≡ tM γM i

(lamExt t)M γM :≡ (t i)M γM
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Displayed algebras

–D : (Γ : Con) → ΓA → Set

–D : (σ : SubΓ∆) → ΓD γ → ∆D (σA γ)

–D : (A : TyΓ) → AA γ → ΓD γ → Set

–D : (t : TmΓA) → (γD : ΓD γ) → AD (tA γ) γD

•D γ :≡ ⊤
ϵD γD :≡ tt

idD γD :≡ γD

(σ ◦ δ)D γD :≡ σD (δD γD)

(Γ ▷ A)D (γ, α) :≡ (γD : ΓD γ)× AD α γD

(A[σ])D α γD :≡ AD α (σD γD)

(t[σ])D γD :≡ tD (σD γD)

pD (γD, αD) :≡ γD

qD (γD, αD) :≡ αD

(σ, t)D γD :≡ (σD γD, tD γD)

UD a γD :≡ a → Ty0

(El a)D t γD :≡ aD γD t

⊤D γD :≡ λ .⊤0

ttD γD :≡ tt0

(Σ a b)D γD :≡ λ (α, β). (αD : aD γD α)×0 b
D (γD, αD) β

(proj1 t)
D γD :≡ proj1 (t

D γD)

(proj2 t)
D γD :≡ proj2 (t

D γD)

(t, u)D γD :≡ (tD γD, uD γD)

(Id t u)D γD :≡ λ (p : tA γ = uA γ). tr(aD γD) p (t
D γD) = uD γD

reflD γD :≡ refl : tD γD = tD γD

(Πext Ix b)D γD :≡ λ t. (i : Ix ) → (b i)D γD (t i)

(appext t i)D γD :≡ tD γD i

(lamext t)D γD :≡ λ i. (t i)D γD

(Π aB)D t γD :≡ {α : aA γ}(αD : aD γD α) → BD (t α) (γD, αD)

(app t)D (γD, αD) :≡ tD γD αD

(lam t)D γD :≡ λ {α}αD. tD (γD, αD)

(ΠExt Ix B)D t γD :≡ (i : Ix ) → (B i)D (t i) γD

(appExt t i)D γD :≡ tD γD i

(lamExt t)D γ :≡ λ i. (t i)D γD
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Sections

–S : (Γ : Con) → (γ : ΓA) → ΓA γ → Set

–S : (σ : SubΓ∆) → ΓS γ γD → ∆S (σA γ) (σD γD)

–S : (A : TyΓ) → (α : AA γ) → AD α γD → ΓS γ γD → Set

–S : (t : TmΓA) → (γS : ΓS γ γD) → AS (tA γ) (tD γD) γS

•S γ γD :≡ ⊤
ϵS γS :≡ tt

idS γS :≡ γS

(σ ◦ δ)S γS :≡ σS (δS γS)

(Γ ▷ A)S (γ, α) (γD, αD) :≡ (γS : ΓS γ γD)× AS ααD γS

(A[σ])S ααD γS :≡ AS ααD (σS γS)

(t[σ])S γS :≡ tS (σS γS)

pS (γS, αS) :≡ γS

qS (γS, αS) :≡ αS

(σ, t)S γS :≡ (σS γS, tS γS)

US a aD γS :≡ (α : a) → aD α

(El a)S ααD γS :≡ aS γS α ≡ αD

⊤S γS :≡ λ . tt0

ttS γS :≡ refl

(Σ a b)S γS :≡ λ (α, β). (aS γS α, bS (γS, refl) β)

(proj1 t)
S γS :≡ refl

(proj2 t)
S γS :≡ refl

(t, u)S γS :≡ refl

(Id t u)S γS :≡ λ (p : tA γ = uA γ). apd (aS γS) p

reflS γS :≡ refl

(Πext Ix b)S γS :≡ λ t i. (b i)S γS (t i)

(appext t i)S γS :≡ refl

(lamext t)S γS :≡ refl

(Π aB)S t tD γS :≡ (α : aA γ) → BS (t α) (tD (aS γS α)) (γS, refl)

(app t)S (γS, αS) :≡ tS γS α where αS : aS γS α ≡ αD

(lam t)S γS :≡ λα. tS (γS, refl) where refl : aS γS α ≡ aS γS α

(ΠExt Ix B)S t tD γS :≡ (i : Ix ) → (B i)S (t i) (tD i) γS

(appExt t i)S γS :≡ tS γS i

(lamExt t)S γS :≡ (t i)S γS
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Summary

This thesis develops the usage of certain type theories as specification languages for algebraic
theories and inductive types. We observe that the expressive power of dependent type theories
proves useful in the specification of more complicated algebraic theories. In the thesis, we
describe three type theories where each typing context can be viewed as an algebraic signature,
specifying sorts, operations and equations. These signatures are useful in broader mathematical
contexts, but we are also concerned with potential implementation in proof assistants.

In Chapter 3, we describe a way to use two-level type theory [ACKS19] as a metalanguage
for developing semantics of algebraic signatures. This makes it possible to work in a concise
internal notation of a type theory, and at the same time build semantics internally to arbitrary
structured categories. For example, the signature for natural number objects can be interpreted
in any category with finite products.

In Chapter 4, we describe finitary quotient inductive-inductive (FQII) signatures. Most
type theories themselves can be specified with FQII signatures. We build a structured category
of algebras for each signature, where equivalence of initiality and induction can be shown.
We additionally present term algebra constructions, constructions of left adjoint functors of
signature morphisms, and we describe a way to use self-describing signatures to minimize
necessary metatheoretic assumptions.

In Chapter 5, we describe infinitary quotient inductive-inductive signatures. These allow
specification of infinitely branching trees as initial algebras. We adapt the semantics from
the previous chapter. We also revisit term models, left adjoints of signature morphisms and
self-description of signatures. We also describe how to build semantics of signatures internally
to the theory of signatures itself, which yields numerous ways to build new signatures from
existing ones.

InChapter 6, we describe higher inductive-inductive signatures. These differ from previous
semantics mostly in that their intended semantics is in homotopy type theory [Uni13], and
allows higher-dimensional equalities. In this more general setting we only consider enough
semantics to compute notions of initiality and induction for each signature.
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Summary in Hungarian - Magyar összefoglaló

A tézis fő célja az, hogy kidolgozza bizonyos t́ıpuselméletek használatát algebrai elméletek és
indukt́ıv t́ıpusok léırásához. Meglátásunk szerint a függő t́ıpuselméletek kifejezőereje nagy-
ban előseǵıti a tömör és általános specifikációkat. A tézisben három t́ıpuselméletet ı́runk le,
amelyekben a t́ıpuskörnyezeteket értelmezzük algebrai szignatúraként, ami felsorolja egy alge-
brai elmélet szortjait, műveleteit és egyenleteit. A eredményeink felhasználhatók általánosabb
matematikai kontextusban, viszont az is célunk, hogy előseǵıtsük az esetleges pratikus imple-
mentációt tételbizonýıtó-rendszerekben.

A harmadik fejezetben kifejtjük, hogy a kétszintű t́ıpuselmélet [ACKS19] hogyan használható
metanyelvként az algebrai szignatúrák szemantikájához. Ez lehetővé teszi, hogy a szeman-
tikát általánosan adjuk meg, internálisan tetszőleges strukturált kategóriákban, és ugyanakkor
tömör t́ıpuselméleti nyelvben dolgozzunk. Például a természetes szám objektumok szignatúrája
értelmezhető tetszőleges olyan kategóriában, ami rendelkezik véges szorzatokkal.

A negyedik fejezetben léırjuk a véges aritású kvóciens indukt́ıv-indukt́ıv (FQII) szig-
natúrák elméletét. A legtöbb t́ıpuselmélet maga is léırható FQII szignatúrával. Minden
szignatúrához megadjuk az algebrák egy strukturált kategóriáját, ahol az inicialitás és az in-
dukció ekvivalenciája belátható. Továbbá, bemutatunk term algebra konstrukciókat, bal ad-
jungált funktorok konstrukcióját szignatúra-morfizmusokhoz, és bemutatjuk, hogy az önmaguk
elméletét specifikáló szignatúrák seǵıtségével hogyan minimalizálhatók a szükséges metaelméleti
feltételezések.

Az ötödik fejezetben léırjuk a végtelen aritású kvóciens indukt́ıv-indukt́ıv szignatúrák
elméletét, amivel végtelenül elágazó fa struktúrákat is le tudjunk ı́rni az iniciális algebrákban.
Adaptáljuk a korábbi term algebra konstrukciót, a bal adjungált funktorok konstrukcióját és
az önmaguk elméletét specifikáló szignatúrák használatát. Továbbá, megadjuk a szignatúrák
szemantikáját internálisan a szignatúrák elméletének a szintaxisában, amelynek seǵıtségével
sokféleképpen éṕıthetünk új szignatúrákat.

A hatodik fejezetben léırjuk a magasabb indukt́ıv-indukt́ıv szignatúrákat. Ezek elsősorban
a szemantikában különbözek a korábbi szignatúráktól: a metanyelv most a homotópia t́ıpuselmélet
[Uni13], és lehetőség van magasabb dimenziós egyenlőségek megadására. Itt csak annyi sze-
mantikát adunk meg, amiből az inicialitás és indukció fogalmai kiszámolhatók minden szig-
natúrához.
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