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CHAPTER 1

Introduction

This thesis develops the usage of certain type theories as specification languages

for algebraic theories and inductive types.

Type theories have emerged as popular metatheoretic settings for mechanized
mathematics. One reason is that the field of type theory is generally aware of the
issue of overheads in representation, and it is a common endeavor to search for
concise “synthetic” ways to talk about different areas of mathematics. In type
theory, it is a virtue to be able to directly say what we mean, and in a way such

that simple-minded computers are able to verify it.

Algebraic theories are certain mathematical structures which are especially
well-behaved, and which are ubiquitous in mathematics, such as groups or cate-
gories. In type theories, inductive types are certain freely generated (initial) models
of algebraic theories. Inductive types are a core feature in implementations of type
theories, widely used in mathematical formalization, but also as the primary way
to define the data structures which are used in programming.

This thesis observes that if we are to specify more complicated algebraic theo-
ries, dependent type theories provide the natural tool to manage complexities. The
expressive power of type theory which makes it suitable as a foundation for mech-
anized mathematics, also proves useful for the more specialized task of specifying

algebraic signatures.

There is a trade-off between the complexity of a mathematical language and
the ease of usage of the language. Minimal languages are convenient to reason
about and develop metatheory for, but they often require an excessive amount of
boilerplate to work in. However, it is a worthwhile effort to try to move towards

the Pareto frontier of this trade-off. We believe that the current thesis makes
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progress in this respect.

Our signatures are useful in broader mathematical contexts, but we are also
concerned with potential implementation in proof assistants. Although it is un-
likely that our signatures can be deployed in practice exactly as they are, they

should be still helpful as formal bases of practical implementations.

1.1 Overview

In Chapter 2, we present a minimal example of a type theory of signatures. This
allows specifying single-sorted signatures without equations. The purpose of the
chapter is didactic. We develop just enough semantics to get notions of initiality
and induction for algebras. We also present a term algebra construction: this shows
that the initial algebra for each signature can be constructed from the syntax of
signatures itself.

In Chapter 3 we describe a metatheoretic setting which is often used in the
thesis. This is two-level type theory [ACKS19]. Tt allows us to develop general
semantics for signatures, while still working inside a convenient type theory. As
a demonstration, we generalize the semantics from Chapter 2 so that it is given
internally to arbitrary categories-with-families. As a special case, signatures can
be interpreted in arbitrary categories with finite products.

In Chapter 4 we describe finitary quotient inductive-inductive signatures.
These are close to generalized algebraic theories [Car86] in expressive power. In
particular, most type theories themselves can be specified with finitary quotient
inductive-inductive signatures. We significantly expand the semantics of signa-
tures, now for each signature we provide a category of algebras with certain extra
structure, which is equivalent to having finite limits. This allows us to prove for
each signature the equivalence of initiality and induction. Also, owing to two-level
type theory, signatures can be interpreted internally to any category with finite
limits. Additionally

e We present a term algebra construction.

e We show that morphisms of signatures are interpreted as right adjoint func-

tors in the semantics.

e We present how self-description of signatures can be exploited to minimize

metatheoretic assumptions.
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e For certain fragments of the theory of signatures, we describe ways to con-

struct initial algebras from simpler type formers.

In Chapter 5, we describe infinitary quotient inductive-inductive signatures.
These allow specification of infinitely branching trees (as initial algebras). We
adapt the semantics from the previous chapter. We also revisit term models, left
adjoints of signature morphisms and self-description of signatures. Self-description
in particular is significantly strengthened, since the full theories of signatures in
Chapters 4-5 can be now described using infinitary quotient inductive-inductive
signatures. We also describe how to build semantics of signatures internally to
the theory of signatures itself. For example, this means that for each signature,
algebra morphisms are also specified with a signature. The full semantics can be
internalized in the theory of signatures in this manner; this is useful for building
new signatures in a generic way.

In Chapter 6, we describe higher inductive-inductive signatures. These differ
from the previous signatures mostly in their intended semantics, whose context
is now homotopy type theory [Unil3], and which allows specified equalities to
be proof-relevant. The higher-dimensional generalization of types and equalities
makes semantics more complicated, so we only present enough semantics to specify
notions of initiality and induction for each signature. Additionally, we consider
two different notions of algebra morphisms: one preserves structure strictly (up to

definitional equality), while the other preserves structure up to paths.

1.2 How to Read This Thesis

We list several general references which could be helpful for readers.

e It is useful to have some user experience with a type-theory-based proof
assistant or programming language, such as Agda, Coq, Lean or Idris. In
the author’s view, mechanized formalization is the most effective way to

build intuition about working in type theories.

e We often use categories-with-families [CCD19,Hof97, Dyb95] throughout the

thesis.

e We use a modest amount of category theory, for which [Awo10] should be a

sufficient reference.
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e For Chapter 6, the Homotopy Type Theory book [Unil3| provides context

and motivation.

This thesis is mostly written in a linear fashion, as later chapters often revisit or
generalize earlier concepts. There are some breaks from linearity though, so we

summarize dependencies between chapters as follows:
e Chapter 3 depends on Chapter 2.
e All chapters after Chapter 3 depend on it.
e Chapter 5 depends on Chapter 4 as it revisits most constructions from there.

e Chapter 6 only depends on Chapter 3.

1.3 Formalization

Chapter 2 is fully formalized in Agda, and the semantics of weak signatures in
Chapter 6 is mostly formalized, with some omissions and shortcuts. The formal-

ization can be found in [Kov22b].

1.4 Notation and Conventions

Throughout this thesis, we always work in some sort of type theory, although the
exact flavor of the type theory will vary. We summarize here the notations and
conventions that will stay consistent. Our style of notation is a mostly a mix of the

homotopy type theory book [Unil3] and the syntax of the proof assistant Agda.

d-types

We write a dependent pair type as (a : A) X B, where B may refer to a. Pairing
is (t, u), and projections are proj; and proj,. Iterated ¥-types can written as
(a: A) x(b: B)x C, for example. We often silently re-associate left-nested X-
types to the right, e.g. write (a : A) X (b: B) x C instead of (ab: (a: A) x B) x C.

Field projection notation: we reuse binder names in >-types as field projections.
For example, if we have t : (foo : A) x B, then foo, projects the first component
from t. To make this a bit more convenient, we also allow to name the last

components, for example if ¢ : (foo : A) x (bar : B), then we have foo; : A, and
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bar, : B[foo — foo;]. This notation is useful when we handle components of more

complicated algebraic structures.

Unit type

Whenever the unit type is available, we name it T, and its inhabitant tt.

[I-types

Dependent function types are written as (a : A) — B, where B may depend on
the a variable. It is possible to group multiple binders with the same type, as
in (xy : A) — B. For non-dependent function types, we write plainly A — B.
Functions are defined as Ax.t. We may group multiple binders, as in Az y 2.1,
and optionally add type annotation to binders, as in A (z : A).t.

We also use Agda-like implicit arguments: a function type {a : A} — B
signals that we usually omit the argument in function applications. For example,
ifid : {A : Set} - A — A, we write idtrue : Bool. We can still make these
arguments explicit, by using bracketed application, as in id {Bool} true. Similarly,
we may use bracketed A, as in A {A : Set} (z : A).x, to bind implicit arguments.

Sometimes we also write pattern matching abstraction, as in A (x, y).t for a
function with a ¥ domain.

We may use implicit quantification as well: argument binders and types may
be entirely omitted when it is clear where they are quantified. This resembles
the implicit generalization in the Haskell or Idris programming languages. For

example, the A and B types are implicitly quantified below:

map : (A — B) — List A — List B

Identity types

We use — = — and — = — to denote identity types. We always use — = — as
a “strict” equality which satisfies uniqueness of identity proofs. Reflexivity of
identity is always written as refl. We use —=— as intensional identity in Chapter
2. In later chapters, — = — denotes the identity type in the inner layer of a two-level

type theory, and —=— denotes the outer identity type.
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Definitions

We give definitions using :=, for example as in
id: {A:Set} - A— A
ida:=a

Note that we write the function argument on the left of :=, instead of writing a A
on the right. We may switch between the two styles. The type signature can be

omitted in a definition. We may also use pattern matching, like in foo (z, y) := ....



CHAPTER 2

Simple Signatures

In this chapter, we take a look at a very simple notion of algebraic signature. The
motivation for doing so is to present the basic ideas of this thesis in the easiest
possible setting, with explicit definitions. The later chapters are greatly generalized
and expanded compared to the current one, and are not feasible (and probably
not that useful) to present in full formal detail. We also include a complete Agda

formalization of the contents of this chapter, in around 250 lines.

The mantra throughout this dissertation is the following: algebraic theories
are specified by typing contexts in certain theories of signatures. For each class of
algebraic theories, there is a corresponding theory of signatures, which is viewed
as a proper type theory and comes equipped with a model theory. Semantics
of signatures is given by interpreting them in certain models of the theory of
signatures. Semantics should at least provide a notion of induction principle for
each signature; in this chapter we provide a bit more than that, and we will do

substantially more in Chapters 4 and 5.

Metatheory

We work in an intensional type theory which supports II, Y, T, intensional iden-
tity — = —, inductive families, and two universes Set and Set; closed under the
mentioned type formers, with Set : Set;. Since the contents of this chapter are
formalized in Agda, and our notation is reminiscent of Agda too, we can think of

the metatheory as a subset of Agda.
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2.1 Theory of Signatures

Generally, more expressive theories of signatures can describe larger classes of the-
ories. As we are aiming for minimalism right now, the current theory of signatures

is as follows:

Definition 1. The theory of signatures, or ToS for short, is a simple type
theory equipped with the following features:

e An empty base type ¢.

o A first-order function type « — —; this is a function whose domain is fixed
to be t. Moreover, first-order functions only have neutral terms: there is

application, but no A-abstraction.

We can specify the full syntax using the following Agda-like inductive defini-

tions.
Ty  :Set Var : Con — Ty — Set
L : Ty vz :Var(I'>A)A
t— Ty =Ty vs :Var'A— Var(I'>B) A
Con : Set Tm : Con — Ty — Set
. : Con var :Var'A— Tml A

—>— : Con — Ty — Con app: Tml'(t - A) - Tml't —TmIl A

Here, Con contexts are lists of types, and Var specifies well-typed De Bruijn indices,

where vz represents the zero index, and vs takes the successor of an index.

Notation 1. We use capital Greek letters starting from I' to refer to contexts,
A, B, C to refer to types, and t, u, v to refer to terms. In examples, we may
use a nameful notation instead of De Bruijn indices. For example, we may write
z:Tm(e> (z:¢)>(y:¢))e instead of var (vsvz) : Tm(e> ¢ >¢) . Additionally, we

may write ¢ u instead of apptu for t and u terms.

Definition 2. Parallel substitutions map variables to terms.

Sub : Con — Con — Set
SubTA={A:Ty} >VarAA—TmTl A
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We use o and 0 to refer to substitutions. We also recursively define the action of

substitution on terms:

~[-]: TmAA—Subl’'A - TmI' A

(varz) [o]:

ox

(apptu)lo] := app (t[o]) (u[o])

The identity substitution id is defined simply as var. It is easy to see that t[id] = ¢

for all t. Substitution composition is as follows.

—0-:SubAZ= — SubI' A — SubT'=
(0 0d)x = (0x)[d]

Example 1. We may write signatures for natural numbers and binary trees re-

spectively as follows.

NatSig = e (zero : 1) > (suc: 1 — 1)

TreeSig := o> (leaf : ) > (node : 0 — 1 — 1)
In short, the current ToS allows signatures which are

e Single-sorted: this means that we have a single type constructor, correspond-

ing to .

e (losed: signatures cannot refer to any externally existing type. For example,
we cannot write a signature for lists of natural numbers in a direct fashion,

since there is no way to refer to the type of natural numbers.

e Finitary: inductive types corresponding to signatures are always finitely
branching trees. For a counterexample, assuming N as the metatheoretical
type of natural numbers, node : (N — ¢) — ¢ would specify an infinite

branching (if such type was allowed in the ToS).

Remark. We omit A-expressions from the ToS for the sake of simplicity: this
causes terms to be always in normal form (neutral, to be precise), and thus we
can skip talking about conversion rules. Later, starting from Chapter 4 we include

proper fn-rules in theories of signatures.
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2.2 Semantics

For each signature, we need to know what it means for a type theory to support
the corresponding inductive type. For this, we need at least a notion of algebras,
which can be viewed as a bundle of all type and value constructors, and what
it means for an algebra to support an induction principle. Additionally, we may
want to know what it means to support a recursion principle, which can be viewed
as a non-dependent variant of induction. In the following, we define these notions
by induction on ToS syntax.

Remark. We use “algebra” and “model” synonymously throughout this thesis.

2.2.1 Algebras

First, we calculate types of algebras. This is simply a standard interpretation into
the Set universe. We define the following operations by induction; the —4 name is

overloaded for Con, Ty and Tm.

~A4: Ty — Set — Set
A X=X
(LA X =X 5 AYX

~4: Con — Set — Set
MX:={A: Ty} »VarT A — A X

A Tml A — {X :Set} - T4X -5 A1 X
(varz)? vy :=~v2
(apptu)?y =ty (u' )

~A:SubT A — {X :Set} - T4X - AYX

A

cdyz = (ocx)?

Y
Here, types and contexts depend on some X : Set, which serves as the interpreta-
tion of «. We define I'* as a product: for each variable in the context, we get a

semantic type. This trick, along with the definition of Sub, makes formalization
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a bit more compact. Terms and substitutions are interpreted as natural maps.

Substitutions are interpreted by pointwise interpreting the contained terms.

Notation 2. We may write values of I'* using notation for X-types. For example,

we may write (zero : X) x (suc : X — X) for the result of computing NatSig® X.

Definition 3. We define algebras as follows.

Alg : Con — Set;
Algl := (X : Set) x ' X

Example 2. AlgNatSig is computed to (X : Set) x (zero : X) x (suc : X — X).

2.2.2 Morphisms

Now, we compute notions of morphisms of algebras. In this case, morphisms are
functions between underlying sets which preserve all specified structure. The in-
terpretation for calculating morphisms is a logical relation interpretation [HRR14]

over the —4 interpretation. The key part is the interpretation of types:

M (A : Ty){XQXl : Set}(XM Xy — Xl) — AAXQ — AAXl — Set
M XMooy ar = XM ay =y

(=AM XMay o = (1 Xo) = A XM (g 2) (o (XM 1))

We again assume an interpretation for the base type ¢, as Xy, X; and XM :
Xo — X1. XM is function between underlying sets of algebras, and AM computes
what it means that X" preserves an operation with type A. At the base type,
preservation is simply equality. At the first-order function type, preservation is a

quantified statement over Xy. We define morphisms for Con pointwise:

M (T: Con){ Xy X, : Set} — (Xg — X;) = T4 Xy —» T4 X; — Set
M XMooy = {A: Ty}(w: VarT A) — AM XM (g 2) (7, @)

For terms and substitutions, we get preservation statements, which are sometimes

called fundamental lemmas in discussions of logical relations [HRR14].

Mt TmTA) = TM XM gy — AM XM (#40) (24 )

(varz)M M =AMy

(apptu)M ™ = MM (u )



12 2.2. SEMANTICS

M : (0’ : SUbFA) — FMXM’}/o’}/l — AMXM (O'A")/[)> (O’A’}/l)
M

o 7Mx = (ax)M'yM

The definition of (apptu)™ is well-typed by the induction hypothesis u? 4 :
XM (uh ) = u? .

Definition 4. To get notions of algebra morphisms, we again pack up I'? with

the interpretation of ¢.

Mor : {I": Con} — Algl" — AlgI" — Set
Mor {T'} (Xo, 7o) (X1, 1) = (XM Xo — X)) x TM XM gy

Example 3. We have the following computation:

Mor {NatSig} (Xo, zerog, sucy) (X1, zero;, sucy) =
(XM Xy — X))
x (XM zerog = zero;)

x ((z: Xo) = XM (sucy x) = suc; (XM x))
Definition 5. We state initiality as a predicate on algebras:

Initial : {I" : Con} — Alg’ — Set
Initial {T'} v := (¢ : AlgT") — isContr (Mor~v+/)

Here isContr refers to unique existence [Unil3, Section 3.11]. If we drop isContr
from the definition, we get the notion of weak initiality, which corresponds to the
recursion principle for I'. Although we call this predicate Initial, in this chapter
we do not yet show that algebras form a category. We will show this in a more

general setting in Chapter 4.

Morphisms vs. logical relations. The — interpretation can be viewed as a
special case of logical relations over the —“4 model: every morphism is a functional
logical relation, where the chosen relation between the underlying sets happens to

be a function. Consider now a more general relational interpretation for types:
(A Ty){ X Xy SetH(XE - Xg — X — Set) — A1 Xy — A4 X| — Set
B XPap ar := XFagag

(L — A)RXROéO o = (LUO : X0)<I1 : X1> — XRJZ'0$1 — ARXR (aoI'o) (Oél .731)
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Here, functions are related if they map related inputs to related outputs. If we

know that XM oy = (f ag = ;) for some function f, we get
(l’o . X())(Jfl . Xl) — f.l’o =T — ARXR (CYO l’o) (0[1 .171)

Now, we can simply substitute along the input equality proof in the above type,

to get the previous definition for (v — A)M:
(LCO : Xo) — AR XR (Oéo 3','0) (Oél (f $0))

This substitution along the equation is called “singleton contraction” in the jargon
of homotopy type theory [Unil3]. The ability to perform contraction here is at the
heart of the strict positivity restriction for inductive signatures. Strict positivity in
our setting corresponds to only having first-order function types in signatures. If
we allowed function domains to be arbitrary types, in the definition of (A — B)™
we would only have a black-box AM XM : A4 X, — A4 X| — Set relation, which
is not known to be given as an equality.

In Chapter 4 we expand on this. As a preliminary summary: although higher-
order functions have relational interpretation, such relations do not generally com-
pose. What we eventually aim to have is a category of algebras and algebra mor-
phisms, where morphisms do compose. We need a directed model of the theory
of signatures, where every signature becomes a category of algebras. The way to
achieve this is to prohibit higher-order functions, thereby avoiding the polarity

issues that prevent a directed interpretation for general function types.

2.2.3 Displayed Algebras

At this point we do not yet have specification for induction principles. We use
the term displayed algebra to refer to “dependent” algebras, where every displayed
algebra component lies over corresponding components in the base algebra. For
the purpose of specifying induction, displayed algebras can be viewed as bundles
of induction motives and methods.

Displayed algebras over some v : AlgI' are equivalent to slices over v in the
category of I-algebras; we will show this in Chapter 4. A slice f : I'M 4/ v maps
elements of 7"’s underlying set to elements in the base algebra. Why do we need
displayed algebras, then? The main reason is that if we are to eventually implement
inductive types in a programming language or proof assistant, we need to compute

induction principles exactly, not merely up to isomorphisms.
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For more illustration of using displayed algebras in a type-theoretic setting,
see [AL19]. We adapt the term “displayed algebra” from ibid. as a generalization
of displayed categories (and functors, natural transformations) to other algebraic
structures.

The displayed algebra interpretation is a logical predicate interpretation, de-
fined as follows.

D (A Ty {X ) — (X — Set) - A1 X — Set
P XPoa:=XPa

(1= AP XPa:=@: X)2P: XPz) = AP XP (a2)

~D (T : Con){X} — (X — Set) - ' X — Set
PXPr:={A:Ty}(x:VarT' A) — AP XP (y2)

Dt TmT A) = TP XPy — AP XP (14 )

varz)? AP i=~Pg
v v

(apptu)? 4P =P 4P (ut ) (uP 4P)

D (6 :SubT A) - TP XPy — AP XP (64 7)
oP APy = (cz)P~P

Analogously to before, everything depends on a predicate interpretation X? :
X — Set for . For types, a predicate holds for a function if the function preserves
predicates. The interpretation of terms is again a fundamental lemma, and we

again have pointwise definitions for contexts and substitutions.
Definition 6 (displayed algebras).
DispAlg : {I' : Con} — AlgI" — Set;
DispAlg {T'} (X, 7) := (XP : X — Set) x 'P XP 4
Example 4. We have the following computation.
DispAlg {NatSig} (X, zero, suc) =
(XP X — Set)
x (zero® : X zero)

x (suc? :(n:X)—= XPn— XP (sucn))
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2.2.4 Sections

Sections of displayed algebras are “dependent” analogues of algebra morphisms,

where the codomain is displayed over the domain.

S (A TY{ X XPHX  (2: X) = XPa) — (a: A X) — AP XP o — Set
/5 X%a o =X%a=a"

(L= A X%aa? = (x:X) = A5X5 (az) (o (X51))

Con® : (T: Con){X XPWX%:(z:X) = XPz) = (y:TAX) 5 TP XP~ - Set
5 XSq0y = {A: Ty} (x: VarT' A) — A% X (yo2) (11 2)

-5 (t:Tml'A) — 9 XS y~yP — A XS (tAv) (tP~P)
(varz)® 7% =+

(apptu)®% =545 (uv)

—5 (0 :SubT A) = T9 XS y4P — A X5 (64 7) (64 4P)
o’y x = (ox)¥~°
Definition 7 (Displayed algebra sections (“sections” in short)).
Section : {I": Con} — (7 : AlgI") — DispAlg~y — Set
Section (X, 7) (XP~AP) = (X% : (z: X) = XPx) x 9 X5 4P
Example 5. We have the following computation.
Section {NatSig} (X, zero, suc) (XP, zero?, suc?) =
(X% (z:X)—= XPa)
x (zero® : X zero = zero®)
x (suc® :(n:X)— X% (sucn) = suc” n (X*n))
Definition 8 (Induction). We define a predicate which holds if an algebra sup-

ports induction.

Inductive : {I" : Con} — AlgI" — Set,;
Inductive {T'} v := (v” : DispAlg ) — Section y~”
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We can observe that Inductive {NatSig} (X, zero, suc) computes to the usual
induction principle for natural numbers, but with g-rules given as propositional
equalities. The input DispAlg is a bundle of the induction motive and the methods,
and the output Section contains the X* eliminator function together with its /-

rules.

2.3 Term Algebras

In this section we show that if a type theory supports the inductive types com-
prising the theory of signatures, it also supports every inductive type which is
described by the signatures.

Note that we specified Tm and Sub, but did not need either of them when
specifying signatures, or when computing induction principles. That signatures
do not depend on terms is a property specific to simple signatures; this will not be
the case in Chapter 4 when we move to more general signatures. However, terms
and substitutions are already required in the construction of term algebras.

The idea is that terms in contexts comprise initial algebras. For example,
Tm NatSig ¢ is the set of natural numbers (up to isomorphism). Informally, this is
because the only way to construct terms is by applying the suc variable (given by

varvz) finitely many times to the zero variable (given by var (vsvz)).

Definition 9 (Term algebras). Fix an 2 : Con. We abbreviate TmQ ¢ as T;
this will serve as the carrier set of the term algebra. We additionally define the

following.

- TmQA = AAT
t
Au. AT (apptu)

-T. (A:Ty
I t

(L—)A)Tt:

~—

~T:(': Con) = SubQI' = TAT
ITv{A}z = AT (va)

Tt :TmT A) (v : SubQT) — AT (t[v]) = tA (T v)
(varz)” v holds by refl
(apptu)” v holds by t" v and u” v
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~T: (0 :SubT A)(v : SubQT){A}(z : Var A A)

— AT (cov)z =0 (TTv)z

olve:=(ocx)v

Now we can define the term algebra for €2 itself:

TmAlg, : Alg 2
TmAlg,, := Q7 Qid

In the interpretation for contexts, it is important that €2 is fixed, and we do
induction on all I contexts such that there is a SubQI'. It would not work to try
to compute term algebras by direct induction on contexts because we need to refer
to the same T set in the interpretation of every type in a signature.

The interpretation of types embeds terms as A-algebras. At the base type
¢, this embedding is simply the identity function, since AT =T = TmQ:. At
function types we recursively proceed under a semantic A. The interpretation of
contexts is pointwise.

The interpretations of terms and substitutions are coherence properties, which
relate the term algebra construction to term evaluation in the —4 model. For
terms, if we pick v = id, we get ATt = t4 TmAlg,,. The left side embeds ¢ in the
term model via —7, while the right hand side evaluates ¢ in the term model.

One way to view the term algebra construction, is that we are working in a
slice model over the fixed €2, and every v : SubQT" can be viewed as an internal
[-algebra in this model. The term algebra construction demonstrates that every

such internal algebra yields an external element of ',

2.3.1 Recursor Construction

We show that TmAlg, supports a recursion principle, i.e. it is weakly initial.

Definition 10 (Recursor construction). We assume (X, w) : Alg(2; recall that
X :Setand w: Q4 X. We defineR: T — X as Rt := t4w. We additionally define
the following.

“B(ATy)(t: TmQA) — AMR (AT ) (tAw)

W t=(refl : t'w = t* W)

(t— ARt = u. A% (apptu)
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B (T : Con)(v:SubQTl') - TMR(I'Tv) (viw)

IMEyr.= AR (va)
We define the recursor for €2 as

Recq : (alg : Alg Q) — Mor TmAlg, alg
Recq (X, w) := (R, Q7 Qid)

In short, the way we get recursion is by evaluating terms in arbitrary (X, w)

algebras using —“.

The - operation for types and contexts confirms that R
preserves structure appropriately, so that R indeed yields algebra morphisms.
We skip interpreting terms and substitutions by —. It is necessary to do so

with more general signatures, but not in the current chapter.

2.3.2 Eliminator Construction

We take the idea of the previous section a bit further. We have seen that recursion
for term algebras is given by evaluation in the “standard” Set model. Now, we
show that induction for term algebras is obtained from the —” interpretation into

the logical predicate model over the Set model.

Definition 11 (Eliminator construction). We assume (X7, w?) : DispAlg TmAlg,.
Recall that X7 : T — Set and w? : QP XP (QT Qid). Like before, we first interpret
the underlying set:

E:(t:T)— XPt

Et:=PwP

However, this definition is not immediately well-typed, since t” w” has type X (t4 (QT Qid)),
so we have to show that t4 (QT Qid) = t. This equation says that nothing hap-
pens if we evaluate a term with type ¢ in the term model. We get it from the —7
interpretation of terms: t7id : t[id] = t* (QT Qid), and we also know that t[id] = ¢.

We interpret types and contexts as well:
~E (A Ty)(t: TmQA) — ASE(A (QT Qid)) (1P wP)
o t: (M (QTQid)P WP =P WP
(t— A)Ft:= Au. AP (apptu)
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~E (T : Con)(v:SubQT') — I E (v (2T Qid)) (v" wP)

Ifvg.= A% (va)

In ¥ we use the same equation as in the definition of E. In (¢ — A)¥ the definition
is well-typed because of the same equation, but instantiated for the abstracted
u term this time. All of this amounts to some additional path induction and
transport fiddling in the (intensional) Agda formalization. We get induction for

as below.

Indg, : (alg : DispAlg TmAlgg,) — Section TmAlg, alg
Indg (X7, wP) = (B, QF Qid)

2.4 Comparison to Endofunctors as Signatures

A well-known alternative definition of algebraic signatures is to view certain co-
continuous endofunctors as such. For example, single-sorted signatures can be
defined to be endofunctors which preserve colimits of some ordinal-indexed chains.
For instance, if we have a x-cocontinuous F': C — C, then algebras are given as
(X :|C|) x (C(F X, X)), called F-algebras, morphisms as commuting squares, and
Adédmek’s theorem [AKT79] establishes the existence of initial algebras.

An advantage of this approach is that we can describe different classes of sig-

natures by choosing different C categories:
o If C is Set, we get simple inductive theories.
o If C is Set’ for some set I, we get indexed inductive signatures.
o If Cis Set/I, we get inductive-recursive signatures.

Another advantage is that signatures are fairly semantic in nature: they make
sense even if we have no syntactic presentation at hand. That said, often we do
need syntactic signatures, for use in proof assistants, or just to have a convenient
notation for a class of cocontinuous functors.

An elegant way of carving out a large class of such functors is to consider
polynomials as signatures. For example, when working in Set, a signature is an
element of (S : Set) x (P : S — Set), and (S, P) is interpreted as a functor as
X = (s:9) x (Ps— X). The initial algebra is the W-type specified by S shapes

and P positions. This yields infinitary inductive types as well.
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However, it is not known how to get inductive-inductive signatures by picking
the right C category and a functor. In an inductive-inductive signature, there
may be multiple sorts, which can be indexed over previously declared sorts. For
example, in the signature for categories we have Obj : Set and Mor : Obj — Obj —

Set, indexed twice over Obj. Some extensions are required to the idea of F-algebras:

e For inductive-inductive definitions with two sorts, Forsberg gives a specifica-
tion with two functors, and a considerably more complex notion of algebras,

involving dialgebras [NF13].!

e For an arbitrary number of sorts, Altenkirch et al. [ACDT18] use a “list” of
functors, specified mutually with categories of algebras: each functor has as

domain the semantic category of all previous sorts.

The functors-as-signatures approach gets significantly less convenient as we
consider more general specifications. The approach of this thesis is to skip the
middle ground between syntactic signatures and semantic categories of algebras:
we treat syntactic signatures as a key component, and give direct semantic in-
terpretation for them. Although we lose the semantic nature of signatures, our
approach scales extremely well, all the way up to infinitary quotient-inductive-
inductive types in Chapter 5, and to some extent to higher inductive-inductive
types as well in Chapter 6.

If we look back at —4 : Con — Set — Set, we may note that ['* yields a
functor, in fact the same functor (up to isomorphism) that we would get from an
endofunctor presentation. However, this is a coincidence in the single-sorted case.
We can view (X : |C|) x (C(F X, X)) as specifying the category of algebras as the
total category of a displayed category (by viewing the 3-type here as taking total
categories; a X in Cat). In our approach, we aim to get the displayed categories

directly, without talking about functors.

'However, the dialgebra specification only covers restricted signatures, where B : A — Set
constructor types may refer to A : Set constructors, but no other dependency is allowed. There
is a more general and yet more complicated notion of signature in [NF13], which is not anymore

represented with functors.



CHAPTER 3

Semantics in Two-Level Type Theory

In this chapter we describe how two-level type theory is used as a metatheoretic
setting in the rest of this thesis. First, we provide motivation and overview. Sec-
ond, we describe models of type theories in general, and models of two-level type
theories as extensions. Third, we describe presheaf models of two-level type theo-
ries. Finally, we generalize the semantics and the term algebra construction from

Chapter 2 in two-level type theory, as a way to illustrate the applications.

3.1 Motivation

We note two shortcomings of the semantics presented in the previous chapter.

First, the semantics that we provided was not as general as it could be. We
used the internal Set universe to specify algebras, but algebras make sense in many
different categories. A crude way to generalize semantics is to simply say that our
formalization, which was carried out in the syntax (i.e. initial model) of some
intensional type theory, can be interpreted in any model of the type theory. But
this is wasteful: for simple inductive signatures, it is enough to assume a category
with finite products as semantic setting. We do not need all the extra baggage
that comes with a model of a type theory.

Second, we were not able to reason about definitional equalities, only propo-
sitional ones. We have a formalization of signatures and semantics in intensional
Agda, where the two notions differ!, but only propositional equality is subject to
internal reasoning. For instance, we would like to show that term algebras support

recursion with strict S-rules, and for this we need to reason about strict equality.

L As opposed to in extensional type theory, where they are the same.

21
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Notation 3. We use o for the terminal object in a C category, with € : C(A, o)
for the unique morphism. For products, we use —® — with (-—) : C(4, B) —
C(A, C) — C(A, B® () and p and q for first and second projections respectively.

Example 6. Assuming a category C with finite products, we specify natural num-
ber algebras and binary tree algebras as follows. Below, Algyaisi; and Alg,eesi, are
both sets in some metatheory, and the x in the definitions refer to the metatheo-
retic 2.

Algyasig = (X 1 [C]) x C(s, X) x C(X, X)
Algrieesiy = (X 1 [C]) x C(s, X) x C(X @ X, X)

How should we adjust Alg from the previous chapter to compute algebras in C,
and Mor to compute their morphisms? While it is possible to do this in a direct
fashion, working directly with objects and morphisms of C is rather unwieldy. C

is missing many convenience features of type theories.

e There are no variables or binders. We are forced to work in a point-free style
or chase diagrams; both become difficult to handle above a certain level of

complexity.
e There are no functions, universes or inductive types.

e Substitution (with weakening as a special case) has to be handled explicitly
and manually. Substitutions are certain morphisms, while “terms” are also
morphisms, and we have to use composition to substitute terms. In contrast,
if we are working internally in a type theory, terms and substitutions are
distinct, and we only have to explicitly deal with terms, and substitutions

are automated and implicit.

The above overlaps with motivations for working in internal languages [nc21]
of structured categories: they aid calculation and compact formalization by hiding
bureaucratic structural details.

A finite product category C does not have much of an internal language, it
is too bare-bones. But we can work instead in the internal language of C, the
category of presheaves over C. This allows faithful reasoning about C, while also
including all convenience features of extensional type theory.

Two-level type theories [ACKS19], or 2LTT in short, are type theories such
that they have “standard” interpretations in presheaf categories. A 2LTT has an
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inner layer, where types and terms arise by embedding C in @, and an outer layer,
where constructions are inherited from C. The exact details of the syntax may
vary depending on what structures C supports, and which type formers we assume
in the outer layer. Although it is possible to add assumptions to a 2LTT which
preclude standard presheaf semantics [ACKS19, Section 2.4.], we stick to basic
2LTT in this thesis. By using 2LTT, we are able to use a type-theoretic syntax
which differs only modestly from the style of definitions that we have seen so far.

From a programming perspective, basic 2LTT provides a convenient syntax for
writing metaprograms. This can be viewed as two-stage compilation: if we have a
2LTT program with an inner type, we can run it, and it returns another program,

which lives purely in the inner theory.

3.2 Models of Type Theories

Before explaining 2LTT-specific features, we review models of type theories in
general. Variants of 2LTT will be obtained by adding extra features on the top of
more conventional type theories.

It is also worth to take a more general look at models at this point, because
the notions presented in this subsection (categories with families, type formers)

will be reused several times in this thesis, when specifying theories of signatures.

3.2.1 The Algebraic View

We take an algebraic view of models and syntaxes of type theories throughout
this thesis. Models of type theories are algebraic structures: they are categories
with certain extra structure. The syntax of a type theory is understood to be its
initial model. In initial models, the underlying category is the category of typing
contexts and parallel substitutions, while the extra structure corresponds to type
and term formers, and equations quotient the syntax by definitional equality.
Type theories can be described with quotient inductive-inductive (QII) sig-
natures, and their initial models are quotient inductive-inductive types (QIITS).
Hence, 2LTT is also a QII theory. We will first talk about QIITs in Chapter 4.
Until then, we shall make do with an informal understanding of categorical seman-
tics for type theories, without using anything in particular from the metatheory of
QIITs. There is some circularity here, that we talk about QIITs in this thesis, but

we employ QIITs when talking about them. However, this is only an annoyance
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in exposition and not a fundamental issue: Sections 4.5 and 5.7 describe how to
eliminate circularity by a form of bootstrapping.

The algebraic view lets us dispense with all kinds of “raw” syntactic objects.
We only ever talk about well-typed and well-formed objects, moreover, every con-
struction must respect definitional equalities. For terms in the algebraic syntax,
definitional equality coincides with metatheoretic equality. This mirrors equality
of morphisms in 1-category theory, where we usually reuse metatheoretic equality
in the same way.

In the following we specify notions of models for type theories. We split this

in two parts: categories with families and type formers.

3.2.2 Categories With Families

Definition 12. A category with families (cwf) [Dyb95] is a way to specify
the basic structural rules for contexts, substitutions, types and terms. It yields a

dependently typed explicit substitution calculus. A cwf consists of the following.

e A category with a terminal object. We denote the set of objects as Con : Set
and use capital Greek letters starting from I' to refer to objects. The set of
morphisms is Sub : Con — Con — Set, and we use o, § and so on to refer to
morphisms. We write id for the identity morphism and —o — for composition.
The terminal object is ¢ with unique morphism € : SubI"e. In initial models
(that is, syntaxes) of type theories, objects correspond to typing contexts,
morphisms to parallel substitutions and the terminal object to the empty

context; this informs the naming scheme.

o A family structure, containing Ty : Con — Set and Tm : (I' : Con) — Ty[' —
Set. We use A, B, C' to refer to types and t, u, v to refer to terms. Ty is a
presheaf over the category of contexts and Tm is a displayed presheaf over

Ty. This means that types and terms can be substituted:

~[-]: TyA —=Subl’A - Ty T

—[-]: TmAA = (0:SubT"A) - TmT (A[o])
Substitution is functorial: we have Afid] = A and Afo o §] = Alo][d], and
likewise for terms.

A family structure is additionally equipped with context comprehension which

consists of a context extension operation — > — : (I' : Con) — Ty’ — Con
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together with a natural isomorphism SubI' (A > A) ~ ((¢ : SubI'A) x
TmT (Alo])).

The following notions are derivable from the comprehension structure:

e By going right-to-left along the isomorphism, we recover substitution exten-
sion —,— : (0 : SubT'A) — TmT (Alo]) — SubI' (A > A). This means that
starting from e or the identity substitution id, we can iterate —, — to build

substitutions as lists of terms.

e By going left-to-right, and starting from id : Sub (I'> A) (I'> A), we recover
the weakening substitution p : Sub (I'> A) T" and the zero variable q : Tm (I'>

A) (Alp)).

e By weakening q, we recover a notion of variables as De Bruijn indices. In
general, the n-th De Bruijn index is defined as q[p"], where p™ denotes n-fold

composition.

Comprehension can be characterized either by taking —, —, p and q as primitive,
or the natural isomorphism. The two are equivalent, and we may switch between
them, depending on which is more convenient.

There are other ways for presenting the basic categorical structure of models,
which are nonetheless equivalent to cwfs, including natural models [Awol8] and
categories with attributes [Car78]. We use the cwf presentation for its immediately

algebraic character and closeness to conventional explicit substitution syntax.

Notation 4. As De Bruijn indices are hard to read, we will mostly use nameful
notation for binders. For example, assuming Nat : {I" : Con} — TyI and Id :
{T": Con}(A : TyT) > TmT'A — TmI' A — TyT', we may write « > n : Nat >
p : IdNatnn for a typing context, instead of using numbered variables or cwf

combinators as in «> Nat > Id Natqq.
Notation 5. In the following, we will denote family structures by (Ty,Tm) pairs
and overload context extension — > — for different families.

Definition 13. The following derivable operations are commonly used.

e Single substitution can be derived from parallel substitution as follows. As-
sume ¢t : Tm(I'> A)B, and u : TmI['A. ¢ is a term which may depend on
the last variable in the context, which has A type. We can substitute that
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variable with the u term as t[id, u] : TmT (A[id, u]). Note that term sub-
stitution causes the type to be substituted as well. (id, v) : SubI' (I'> A) is
well-typed because u : TmT' A hence also v : TmT (Alid]).

e We can [ift substitutions over binders as follows. Assuming o : SubT" A and
ATy A, we construct a lifting of o which maps an additional A-variable to
itself: (cop,q):Sub(I'>Alo]) (A A). Let us see why this is well-typed.
We have p : Sub (I'> A[o]) T and o : SubT" A, so oop : Sub (I'> A[o]) A. Also,
q: Tm(I'> Alo]) (Alo][p]), hence q : Tm (I'> Alo]) (A[o o p]), thus (o op, q)
typechecks.

Notation 6. As a nameful notation for substitutions, we may write t[x — u], for a
single substitution, or t[z — u1,y — us] and so on.

In nameful notation we leave all weakening implicit, including substitution
lifting. Formally, if we have t : TmI[' A, we can only mention ¢ in I'. If we need

to mention it in I' > B, we need to use t[p| instead. In the nameful notation,
t: Tm(T'>x: B) A may be used.?

3.2.3 Type formers

A family structure in a cwf may be closed under certain type formers, such as
functions, »-types, universes or inductive types. We give some examples here for
their specification. First, we look at common negative type formers; these are
the type formers which can be specified using isomorphisms. Then, we consider

positive type formers, and finally universes.

Negative types

Definition 14. A (Ty, Tm) family supports II-types if it supports the following.

I :(A:TyI)) > Ty(TrA) - TyT
1 (A B)lo] = 11 (Alo]) (Blo o p, )
app : TmI'(ITAB) - Tm(I'>A)B
lam : Tm(T'>A)B — TmI'(IT A B)
IG5 :app(lamt) =t

2Moreover, when working in the internal syntax of a theory, we just write Agda-like type-

theoretic notation, without noting contexts and substitutions in any way.
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IIn :lam(appt) =t
lam[] : (lamt)[o] = lam (t[o o p, q])

Here, II is the type formation rule. M| is the type substitution rule, expressing
that substituting IT proceeds structurally on constituent types. Note B[o o p, q,
where we lift o over the additional binder.

The rest of the rules specify a natural isomorphism TmT' (ITAB) ~ Tm (I'>
A) B. We only need a substitution rule (i.e. a naturality rule) for one direction of
the isomorphism, since the naturality of the other map is derivable.

This way of specifying II-types is very convenient if we have explicit substitu-
tions. The usual “pointful” specification is equivalent to this. For example, we

have the following derivation of pointful application:
app’ : TmT'(TAB) = (u: TmI'A) = Tm T (BJid, u))
app’ tu = (appt)lid, u]

Remark on naturality. The above specification for Il can be written more

compactly if we assume that everything is natural with respect to substitution.

I1 (A Tyl) - Ty(IT>A) - Tyl
(app, lam) : TmI'(ITAB) ~Tm(I'> A) B

This is a reasonable assumption; in the rest of the thesis we only ever define

structures on cwfs which are natural in this way.

Notation 7. From now on, when specifying type formers in family structures, we

assume that everything is natural, and thus omit substitution equations.

There are ways to make this idea more precise, and take it a step further by
working in languages where only natural constructions are possible. The term
higher-order abstract syntax (HOAS) is sometimes used for this style. It lets us

also omit contexts, so we would only need to write
I1 (A:Ty) = (TmA - Ty) = Ty
(app, lam) : Tm(IIAB) ~ ((a: TmA) — Tm(Ba))
Recently several promising works emerged in this area [Uem19,SA21, BKS21]. Al-

though this technology is likely to be the preferred future direction in the metathe-
ory of type theories, this thesis does not make use of it. The field is rather fresh,
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with several different approaches and limited amount of pedagogical exposition,
and the new techniques would also raise the level of abstraction in this thesis, con-
tributing to making it less accessible. It is also not obvious how exactly HOAS-style
could be employed to aid formalization here, and it would require significant addi-
tional research. Often, a setup with multiple modalities (“multimodal” [GKNB20])
is required [BKS21] because we work with presheaves over different cwfs. It seems
that a synthetic notion of dependent modes would be also required to formalize
constructions in this thesis, since we often work with displayed presheaves over

displayed cwfs. This is however not yet developed in the literature.

Definition 15. A family structure supports constant families if we have the

following.

K : Con — {I": Con} — Tyl
(appg, lamk) : TmT'(KA) ~ SubT' A

Constant families express that every context can be viewed as a non-dependent
type in any context. Having constant families is equivalent to the democracy
property for a cwf [CD14, NF13]. Constant families are convenient when build-
ing models because they let us model non-dependent types as semantic contexts,
which are often simpler structures than semantic types. From a programming
perspective, constant families specify closed record types, where KA has A-many
fields.

If we have equalities of sets for the specification, i.e. TmI['(KA) = SubT" A, we

have strict constant families.

Definition 16. A family structure supports X-types if we have

z (A Tyl - Ty('p A) —» Tyl
(proj, (—,—)) : TmI(XAB) ~ ((t: Tm[' A) x Tm T (B]id, t]))

We may write proj; and proj, for composing the metatheoretic first and second

projections with proj.

Definition 17. A family structure supports the unit type if we have T : Ty
such that TmI' T ~ T, where the T on the right is the metatheoretic unit type,
and we overload T for the internal unit type. From this, we get the internal

tt: Tm ' T, which is definitionally unique.
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Definition 18. A family structure supports extensional identity types if there
isld: TmI'A — TmT[' A — Ty T such that (reflect, refl) : Tm ' (Idtu) ~ (t = u).

It is also possible to give a positive definition for identity types, in which
case we get intensional identity. Extensional identity corresponds to a categorical
equalizer of terms (a limit), while the Martin-Lof-style intensional identity is a
positive (inductive) type.

This choice between negative and positive specification generally exists for type
formers with a single term construction rule. For example, ¥ can be defined as a
positive type, with an elimination rule that behaves like pattern matching. Positive
Y} is equivalent to negative X, although it only supports propositional 7n-rules. In
contrast, positive identity is usually not equivalent to negative identity.

refl : ¢ =wu — TmT (Idtu) expresses reflexivity of identity: definitionally equal
terms are provably equal. reflect, which goes the other way around, is called
equality reflection: provably equal terms are identified in the metatheory.

Uniqueness of identity proofs (UIP) is often ascribed to the extensional identity
type (see e.g. [Hof95]). UIP means that TmI' (Id¢u) has at most a single inhab-
itant up to Id. However, UIP is not something which is inherent in the negative
specification, instead it is inherited from the metatheory. If Tm forms a homotopy
set in the metatheory, then internal equality proofs inherit uniqueness through the

defining isomorphism.

Positive types

We do not dwell much on positive types here, as elsewhere in this thesis we talk a
lot about specifying such types anyway. We provide here some background and a
small example.

The motivation is to specify initial internal algebras in a cwf. However, spec-
ifying the uniqueness of recursors using definitional equality is problematic, if we
are to have decidable and efficient conversion checking for a type theory. Consider

the specification of Bool together with its recursor.

Bool Tyl

true : Tm T Bool

false : Tm I Bool

BoolRec: (B: Tyl') » TmI'B —- TmI'B — TmI'Bool - TmI' B
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true  : BoolRec Bt ftrue =t
falses : BoolRec Bt ffalse = f

BoolRec together with the S-rules specifies an internal Bool-algebra morphism. A
possible way to specify definitional uniqueness is as follows. Assuming B : Ty I,
t:TmIB, f: TmI' B and m: Tm(I'>b: Bool) B, such that m[b + true] = ¢ and
m[b — false] = f, it follows that BoolRec Bt fb: Tm (I'>b : Bool) B is equal to m.

Unfortunately, deciding conversion with this rule entails deciding pointwise
equality of arbitrary Bool functions, which can be done in exponential time in the
number of Bool arguments. More generally, Scherer presented a decision algorithm
for conversion checking with strong finite sums and products in simple type theory
[Sch17], which also takes exponential time. If we move to natural numbers with
definitionally unique recursion, conversion checking becomes undecidable, since it
would require deciding extensional equality of Nat functions.

The standard solution is to have dependent elimination principles instead: this
allows inductive reasoning, canonicity and effectively decidable definitional equal-

ity at the same time. For Bool, we would have

Boollnd : (B : Ty (I'> b : Bool)) — Tm ' (B[b — true])
— TmT (B[b+ false]) — (t : TmT'Bool) — TmT (B[b +— t])

together with Boollnd Bt f true =t and Boollnd Bt f false = f.

Of course, if we assume extensional identity types, we have undecidable con-
version anyway, and definitionally unique recursion is equivalent to induction. But
decidable conversion is a pivotal part of type theory, which makes it possible to
relegate a deluge of boilerplate to computers, so decidable conversion should be

kept in mind.

Universes

Universes are types which classify types. There are several different flavors of

universes.
Definition 19. A Tarski-style universe consists of the following data:

U:TyT El: TmT'U— Tyl

This is a weak classifier, since not all elements of Ty ' are necessarily repre-

sented as terms of the universe. Like families, Tarski universes can be closed under
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type formers. For instance, if U has Nat, we have the following:

Nat: TmI'U zero: TmTI' (EINat) suc: TmI' (EINat) — TmI (ElNat)

NatElim: (P : Ty (I'>n : EINat))
— TmT (P[n — zero))
— TITm(I'>n: EINat>np : Pln— n]) (P[n — sucn])
— (n: TmT (EINat)) — TmT (P[n + n])

If all type formers in U follow this scheme, U may be called a weakly Tarski
universe. If we assume that every type former in U is also duplicated in (Ty, Tm),
moreover El preserves all type formers, so that e.g. EI Nat is definitionally equal to
the natural number type in Ty, then U is strongly Tarski.

It is often more convenient to have stronger classifiers as universes, so that all

types in a given family structure are represented.

Definition 20. Ignoring size issues for now, Coquand universes [Coql8] are
specified as follows:
U: Tyl (ELc): TmTUx~TyT

c maps every type in Ty to a code in U. Now we can ignore El when specifying

type formers, as ¢ can be always used to get a code in U for a type.

Unfortunately, the exact specification above yields an inconsistent “type-in-
type” system because U itself has a code in U. The standard solution is to have
multiple family structures (Ty,;, Tm;), indexed by universe levels, and have U; :
Ty, I'and Tm; I'U; ~ Ty, I'. For a general specification of consistent universe
hierarchies, see [Kov22a]. We omit universe indices in the following, and implicitly

assume “just enough” universes for particular purposes.

Definition 21. Russell universes are Coquand universes additionally satisfying
TmI'U = Ty as an equality of sets, and also Elt = ¢. This justifies omitting El

and c from informal notation, implicitly casting between TmI'U and Ty T

Russell-style universes are commonly supported in set-theoretic models. They
are also often inherited from meta-type-theories which themselves have Russell-
universes. Major implementations of type theories (Coq, Lean, Agda, Idris) are

all such.
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3.3 Two-Level Type Theory

3.3.1 Models

We describe models of 2LTT in the following. This is not the only possible way
to present 2LTT; our approach differs from [ACKS19] in some ways. We will

summarize the differences at the end of this section.

Definition 22. A model of a two-level type theory is a model of type theory
such that

o It supports a Tarski-style universe Ty, : Ty I' with decoding Tmg : TmI' Ty, —
TyI'.

e Ty, may be closed under arbitrary type formers, however, it is only possible

to eliminate from Ty, type formers to types in Ty,.

Types in Ty, are called inner types, while other types are outer. Alternatively, we

may talk about object-level and meta-level types.

For example, if we have inner functions, we have the following:

IT, (A:TmT Tyy) > Tm(T'>Tmg A) — TmT Ty,
(appy, lamg) : TmI' (Tmy (Ilg A B)) = Tm (I'> Tmg A) (Tmg B)

If we have inner Booleans, we have the following (with S-rules omitted):

Booly : TmI'Ty,
trueg  : TmI' (Tmg Booly)
falseg  : TmI' (TmgBooly)
Boollndg : (B : Tm (I'> b : Tmqg Booly) Ty,)
— Tm T (Tmq (B[b — trueg)))
— TmT (Tmq (B[b — falseg)))
— (t: TmT (TmgBooly)) = Tm T (Tmg (B[b + t]))

Intuitively, we can view outer types and terms as metatheoretical, while Ty,
represents the set of types in the object theory, and Tmg witnesses that any object

type can be mapped to a metatheoretical set of object terms. The restriction on
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elimination is crucial. If we have a Boolean term in the object language, we can
use the object-level elimination principle to construct new object terms. But it
makes no sense to eliminate into the metatheory. In fact, an object-level Boolean
term is not necessarily true or false, it can also be just a variable or neutral term
in some context, or it can be an arbitrary non-canonical value in a given model.

We review some properties of 2LTT. An important point is the action of Tmy
on type formers. In general, Tmqy preserves the negative type formers but not
others.

For example, we have the isomorphism Tmq (IIg A B) ~ II; (Tmg A) (Tmq B),
where IT; denotes outer functions. We move left-to-right by mapping ¢ to lam; (app; t),
and the other way by mapping ¢ to lamg (app,t). The preservation of 3, T, K and
extensional identity is analogous.

In contrast, we can map from outer positive types to inner ones, but not the
other way around. From b : TmI Bool;, we can use the outer Bool; recursor to
return in Tmg Booly. In the other direction, only constant functions are definable
since the Booly recursor only targets types in Ty,.

It may be the case that there are universes in the inner layer. For example,
disregarding size issues (or just accepting an inconsistent inner theory), there may
be an Uy in Ty, such that we have TmI'(TmgUy) = Tm T Ty,. This amounts to
having a Russell-style inner universe with type-in-type. Assume that we have U;
as well, as a meta-level Russell universe. Then we can map from Tmg Ug to Uy, by

taking A to Tmg A, but we cannot map in the other direction.

3.3.2 Internal Syntax and Notation

In the rest of this thesis we will often work internally to a 2LTT, i.e. we use 2LTT
as metatheory. We adapt the metatheoretical notations used so far. We list used

features and conventions below.

e We keep previous notation for type formers. For instance, [I-types are writ-
ten as (r: A) —» Boras A — B.

e We assume a Coquand-style universe in the outer layer, named Set. As be-
fore, we leave the sizing levels implicit; if we were fully precise, we would
write Set; for a hierarchy of outer universes. Despite having a Coquand uni-

verse, we shall omit encoding and decoding in the internal syntax, and instead
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work in Russell-style. In practical implementations, elaborating Russell-style

notation to Coquand-style is straightforward to do.

If the same type formers are supported both in the inner and outer layers, we
may distinguish them by ¢ and ; subscripts, e.g. by having Bool, and Bool;.
We omit some inferable subscripts, e.g. for IT and YX-types. In these cases,
we usually know from the type parameters which type former is meant. For

example, Tmq Booly — Bool; can only refer to outer functions.

We have the convention that — = — refers to the inner equality type, while
— = — refers to the outer equality type. If the inner equality is extensional,
the choice between — = — and — = — is immaterial, but in Section 3.5 and

Chapter 6 we do have intensional inner equality.

By having Set, we are able to have Ty, : Set and Tmg : Ty, — Set. So we do
not have to deal with proper meta-level types, and have a more uniform nota-
tion. Notation and specification for inner type formers changes accordingly.
For example, for inner Il-types we may write (z : A) — B if A : Ty, and
B depends on x : Tmy A. This also enables a higher-order specification: if
B :TmgA — Ty, then (x : A) — Ba : Ty, and the specifying isomorphism
for IT can be written as Tmg ((z: A) = Bx) ~ ((z : Tmg A) — Tmg (B z)).

Notation 8. An explicit notation for inner function abstraction would look
like lamgt for t : (z : Tmg A) — Tmg (B x). This results in “double” abstrac-
tion, e.g. in lamg (A z.sucy (sucoz)) : Tmg (Naty — Natg). Instead of this,
we write Agz.t as a notation, thus we write Ag . sucg (sucy ) for the above

example. We may also group multiple Ay binders together the same way as

with .

We may omit inferable Tmq applications. For instance, Bool; — Booly can
be “elaborated” to Bool; — Tmg Booly without ambiguity, since the function
codomain must be on the same level as the domain, and the only thing we
can do to make sense of this is to lift the codomain by Tmy. Sometimes
there is some ambiguity: (Booly — Booly) — Bool; can be elaborated both
to Tmg (Booly — Boolg) — Bool; and to (Tmg Booly — Tmg Booly) — Bools.
However, in this case the two output types are definitionally isomorphic
because of the Il-preservation by Tmg. Hence, the elaboration choice does

not make much difference, so we may still omit Tmg-s in situations like this.
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Example 7. Working in the internal syntax of 2LTT, the specification of Booly
looks like the following (omitting 5 again):

Booly : Ty,
trueg : Boolg
falseg : Booly

Boollndy : (B : Booly — Ty,) — Btrueq — Bfalsey — (¢ : Booly) — Bt

If we elaborate the type of Boollndg, we get the following:

Boollndy : (B : Tmg Booly — Ty,) — Tmq (B truey) — Tmg (B falseg)
— (t: TmgBooly) — Tmq (Bt)

Here, the type is forced to live in the outer level because of the dependency on
Ty,. Since Ty, is an outer type, Booly, — Ty, must be lifted, which in turn requires

all other types to be lifted as well.

3.3.3 Alternative Presentation for 2LTT

We digress a bit on a different way to present 2LTT. In the primary 2LTT reference
[ACKS19], inner and outer layers are specified as follows. We have two different
family structures on the base cwf, (Ty,, Tmg) and (Ty;, Tm;), and a morphism
between them. A family morphism is natural transformation mapping types to
types and terms to terms, which is an isomorphism on terms. We might name the

component maps as follows:

f: Ty, =Ty, I
+:TmeT A — Tmi T (1 A)

An advantage of this presentation is that we may close (Ty,, Tmg) under type
formers without any encoding overhead, for example by having Booly : Ty, T,
trueg : Tmg ' Booly, etc., without the Tarski-style decoding. On the other hand,
we do not automatically get an outer universe of inner types. We can recover that

in two ways:

e We can assume an inner universe Uy : Ty, I', which can be lifted to the outer
theory as 1} Uy. However, we may not want to make this assumption, in order

to keep the inner theory as simple as possible.
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e We can assume an outer universe which classifies elements of Ty,I". This
amounts to reproducing the Ty, type from our 2LTT presentation, as an
additional assumption. But in this case, we might as well skip the two

family structures and the f} morphism.

In this thesis we make ubiquitous use of the outer universe of inner types, so we
choose that to be the primitive notion, instead of having two family structures.
Do we lose anything by this? For the purposes of this thesis, not really. How-
ever, if we want to implement 2LTT as a system for two-stage compilation, the {}
syntax appears to be closer to existing systems. Staging is about computing all
outer redexes but no inner ones, thereby outputting syntax which is purely in the
inner theory. This could be implemented as a stage-aware variant of normalization-
by-evaluation [Abel3,A()V18,WB18]. We can give an intuitive staging interpre-

tation for the operators in the {} syntax:

e A is the type of A-expressions. This corresponds to a code in MetaOcaml
[Kis14] and TExpa in typed Template Haskell [XPL*22].

e 1 is quoting, which creates an expression from any inner term. This is .(—).
in MetaOCaml and [||—||] in typed Template Haskell.

e | is splicing, which inserts the result of a meta-level computation into an
object-level expression. This is ~ (=) in MetaOCaml and $$(—) in typed
Template Haskell.

For example, in the ) syntax, we might write a polymorphic identity function

which acts on inner types in two different ways:
id: (A:Uy) > A— A id: (A:fUg) =1L A) =1 A
id:=)\gAzx.x id =\ Azx.x
The first one lives in the inner family structure. The second one is the same thing,
but lifted to the outer theory. The choice between the two allows us to control
staging-time evaluation. If we write id Boolj truey, that is an inner expression which
goes into the staging output as it is. On the other hand, | (id’ (1 Booly) (1 trueg))
reduces to | (1 trueg) which in turn reduces to truey. The same choice can be
expressed in our syntax as well:
|dTm0((AU0)—>A—>A) id’:(A:TmOUO)—>Tm0A—>Tm0A
id:=)MAzx.x id  =\NAz. 2
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It remains to be checked which style is preferable in a staging implementation.
In the 1} style, the quoting and splicing operations add noise to core syntax, but
they are also mostly inferable during elaboration, and they pack stage-changing
information into 1 and |, thereby making it feasible to omit stage annotations in
other places in the core syntax. In the Ty, style, we do not have quote/splice, but
we have to keep track of stages in all type/term formers. It would be interesting

to compare the two flavors in prototype implementations of staged systems.

3.4 Presheaf Semantics of 2L'TT

We review the standard semantics of 2LT'T which we use in the rest of the thesis.
This justifies the metaprogramming view, that 2LTT allows meta-level reasoning

about an inner theory.

We present it in two steps, by assuming progressively more structure in the
inner theory. First, we only assume a category. This already lets us present a
presheaf semantics for the outer layer. Then, we assume a cwf as the inner theory,

which lets us interpret Ty, and Tm, and also consider inner type formers.

3.4.1 Presheaf Model of the Outer Layer

In this subsection we present a presheaf model for the outer layer of 2LTT, that is,
the base category together with the terminal object, the (Ty, Tm) family and some
type formers. This presheaf semantics is well-known in the literature [Hof97]. We

give a specification which follows [Hub16] most closely.

In the following, we work outside 2LTT (since we are defining a model of 2LTT),
in a suitable metatheory; an extensional type theory with enough Set universes

suffices.

We assume a C category. We write i, j, k : |C| for objects and f, g, h : C(, j)
for morphisms. We use a different notation than for cwfs before, in order to
disambiguate components in C from components in the presheaf model of 2LTT.
We use C to refer to the model which is being defined. We use the same component

names for C as in Section 3.2.
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Model of cwf

Definition 23. I' : Con is a presheaf over C. Its components are as follows.

T :|C|] — Set

(=) T = CG, §) — [T
V(id) =7

v{fog) =79

We flip around the order of arguments in the action of I' on morphisms. This is
more convenient because of the contravariance; we can observe this in the state-
ment of preservation laws already. The action on morphisms is sometimes called

restriction.

Definition 24. o : SubT' A is a natural transformation from I" to A. It has action
o = [Tl — |A]d, such that |o|(v(f)) = (lo[v){f)-

Definition 25. A : Ty I is a displayed presheaf over I'. The “displayed” here is
used in exactly the same sense as in “displayed algebra” before. As we will see in
Chapter 4, presheaves can be specified with a signature, in which case a presheaf is
an algebra, and a displayed presheaf is a displayed algebra. The definition here is
equivalent to saying that A is a presheaf over the category of elements of I', but it
is more convenient to use in concrete definitions and calculations. The components

of A are as follows.

|A| T — Set
(=) Ay = (FCG, 5) = (AT (v ()
alid) =«

a(f og) = alf){g)
Definition 26. ¢ : TmI' A is a section of the displayed presheaf A. This is again
the same notion of section that we have seen before, instantiated for presheaves.
[t = (v = [T[2) = [A]ly
(v (f)) = () ()
Definition 27. I'> A : Con is the total presheaf of the displayed presheaf A. Its
action on objects and morphisms is the following.
> Al = (y: |T]4) x A
(v, @) (f) == (v{f), )



CHAPTER 3. SEMANTICS IN TWO-LEVEL TYPE THEORY 39

The id and —o— preservation laws follow immediately.

Definition 28. Afo| : Tyl is defined as follows, assuming A : Ty A and o :
SubIT"A.

|Alo]|~ := [A| (Je]v)
aff)  =alf)

In the second component, we use —-) for A on the right hand side. The defini-
tion is well-typed since [A[ (Jo| (v(f))) = [A[((|o]|7){f)) by the naturality of o.

Functoriality follows from functoriality of A.
It is easy to check that the above definitions can be extended to a cwtf.
e For the base category, we take the category of presheaves.
e The empty context e is the terminal presheaf, i.e. the constantly T functor.

e Type substitution is functorial, as it is defined as simple function composition

of actions on objects.

e Term substitution is defined as composition of a section and a natural trans-

formation; and also functorial for the same reason.

e Context comprehension structure follows from the »-based definition for con-
text extension.
Yoneda embedding

Before continuing with interpreting type formers in C, we review the Yoneda em-

bedding, as it is useful in subsequent definitions.

Definition 29. The Yoneda embedding, denoted vy, is a functor from C to the
underlying category of C, defined as follows.

y : |C| — Con y : C(i, j) — Sub(yi) (yj)
yi:=C(-, i) lyflg:=fog

Lemma 1 (Yoneda lemma). We have Sub (yi)T' ~ |I'| i as an isomorphism of
sets, natural in ¢ [ML98, Section III.2].
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Corollary. 1f we choose T" to be yj, it follows that Sub (yi) (y j) ~ C(i, j), i.e. that

y is bijective on morphisms; hence it is an embedding.

Notation 9. For ~ : |I'| 4, we use v(—) : Sub(yi)I" to denote transporting right-
to-left along the Yoneda lemma. In the other direction we do not really need a

notation, since from o : Sub (y7) I' we get |o]id : |['] 1.

Type formers

Definition 30. Constant families are displayed presheaves which do not depend

on their context.

K :Con — {I': Con} —» Tyl
KA|{i}y = Al
(f) = 0(/f)

With this definition, we have TmI'(KA) = SubI' A so we have strict constant

families.

Notation 10. It is useful to consider any set as a constant presheaf, so given A : Set

we may write A : Con for the constant presheaf as well.

Definition 31. From any A : Set, we get KA : TyI'. This can be used to model
negative or positive closed type formers. For example, natural numbers are

modeled as KN, Booleans as K Bool, the unit type as KT, and so on.

Definition 32. Coquand universes can be defined as follows. We write Setg
for the outer universe in the model, to distinguish it from the external Set. Since
the Sets is a non-dependent type, it is helpful to define it as a Sets : Con such
that SubI'Setg ~ TyI'. The usual universe can be derived from this as K Setg.
Again, we ignore size issues; the fully formal definition would involve indexing
constructions in C by universe levels.

We can take a hint from the Yoneda lemma. We aim to define [Sets| 7, but by
the Yoneda lemma it is isomorphic to Sub (yi) Sets. However, by specification this

should be isomorphic to Ty (yi), so we take this as definition:
Setg  : Con
|Seta| i := Ty (yi)
A(f) = AlyS]
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In the A(f) definition, we substitute A : Ty (yi) with yf : Sub (yj) (yi) to get
an element of Ty (yj). The required SubI'Sets ~ TyI" is straightforward, so we
omit the definition.

We note that Russell universes are not supported in the outer layer, as SubI" Setg
and Ty I are not strictly the same, in particular they have a different number of
components as iterated X-types. Nevertheless, as we mentioned in Section 3.3.2,
we use Russell-style notation in the internal 2LTT syntax, and assume that en-

coding/decoding is inserted by elaboration.

Definition 33. >-types are defined pointwise. The definitions for pairing and

projections follow straightforwardly.

Py (A TyD) - Ty(IT>A) - Tyl
X AB|y = (a:|Aly) x |B[ (v, a)
(o, B)(f) == (alf), B(S))

Definition 34. We define II-types in the following. This is a bit more compli-
cated, so first we look at the simpler case of presheaf exponentials. We source this
example from [MM12, Section I.]. The reader may refer to ibid. for an overview
of constructions in presheaf categories.

The exponential Al : Con is characterized by the isomorphism Sub (Z®T) A ~
SubZ (Al), where we write ® for the pointwise product of two presheaves. We
can again use the Yoneda lemma. We want to define [AT]4, but this is isomorphic
to Sub (yi) (AT), which should be isomorphic to Sub (yi @ T') A by the specification

of exponentials. Hence:

|AY| i :=Sub (yi ® T') A
o(f) =oo(yfop,q)

In the definition of presheaf restriction, we use p, q as projections and —— as pairing
for ®. In short, (yf op, q) is the same as the morphism lifting from Definition 13:
it weakens yf : Sub(yj) (yi) to Sub(yj @) (yi @ I').

The dependently typed case follows the same pattern, except that we use Tm
and —>— instead of Sub and —®—. Additionally, the action on objects depends on
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v : |T'| 7, and we make use of v(—) : Sub(yi)I" (introduced in Notation 9).

I1 (A Tyl - Ty(I'p A) - Ty
(LA B[ {i} v :=Tm (yix Aly()]) (B[v(-) © p, q])
t(f) =tlyfop,q

Let us unfold the above definition a bit. Assuming ¢ : [Il A B|{i} 7, we have
[t {7 C1} = ((f, @) = (f - €, 1) < [AL (v (F)) = Bl (v{f), @)

This is a bit clearer if we remove the >-type by currying.

t]: {7 [CIHf  C, ) [A[ (v () = Bl (v(f), @)
Restriction is functorial since it is defined as Tm substitution. The definitions
for lam and app are left to the reader.

Definition 35. Extensional identity is defined as pointwise equality of sections:

Id: TmI'A— TmIl'A— Tyl
dtuly = [t]y = |uly

For the restriction operation, we have to show that |t| vy = |u| vy implies [¢| (v(f)) =
|u| (v(f)). This follows from congruence by —(f) and naturality of ¢ and u. The
defining (reflect, refl) : TmT' (Idtu) ~ (¢ = w) isomorphism is evident from UIP

and function extensionality for the metatheoretic — = — relation.

3.4.2 Modeling the Inner Layer

We assume now that C is a cwf. We write types as a, b, ¢ : Tyc7 and terms as
t, u, v: Tmcta. We reuse o for the terminal object and —>— for context extension,

and likewise reuse notation for substitutions.

Definition 36 (Ty,, Tmg). First, note that Ty is a presheaf over C, and Tmc is
a displayed presheaf over Ty; this follows from the requirement that they form a
family structure over C. Hence, in the presheaf model Ty is an element of Con
and Tmg is an element of Ty Ty.. Also recall from Definition 30 that Tm ' (KA) =
SubT' A. With this is mind, we give the following definitions:

Ty, : Ty Tmo: TmI' Ty, — Ty
Ty, := KTye Tmg A := Tmc[A]
Tmc[A4] is well-typed since A : TmT' (K Tye), thus A : SubT Tye. In other words,

A is a natural transformation from I" to the presheaf of inner types.
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Inner type formers

Can type formers in (Tys, Tmc) be transferred to (Ty,, Tmg) in the presheaf model
of 2LTT? For example, if C supports Bool, we would like to model Boolj in Ty, as
well. The following explanation is adapted from Capriotti [Capl7, Section 2.3].

Generally, a type former in C transfers to C if it can be specified in the internal
language of C; if the type former “always has been” in C to begin with. To be
describable in @, a type former needs to be natural with respect to C morphisms.
This is also a core idea of HOAS: when working in C, everything is natural, and we
can omit boilerplate related to contexts and substitutions. For example, consider

the specification of inner Il-types in the internal syntax of 2LTT:

1, (A Tyy) = (Tmg A — Tyy) — Ty,
(appg, lamg) : Tmg (Il AB) ~ ((a: Tmg A) — Tmg (Ba))

We can say that this defines what it means for C to support II. We recover the
usual first-order specification of II by interpreting the higher-order specification as
a context or a closed Y-type in the standard presheaf model of 2LTT.

In summary, if by “type formers” we mean extra structure on (Ty,, Tmg) which
is definable in 2LTT, then by definition all such type formers transfer from C to
(Tyg, Tmg). This holds for every type former mentioned in this thesis.

3.4.3 Functions With Inner Domains

There is a useful semantic simplification in the standard presheaf model, in cases
where we have functions of the form IT(Tmgy A) B. This greatly reduces encoding
overhead when interpreting inductive signatures in 2LTT; we look at examples in

Section 3.5. First we look at the simply-typed case with presheaf exponentials.

Lemma 2. y preserves finite products up to isomorphism, i.e. ye >~ ¢ and y(i®j) ~
(vi ® yj)-

Proof. ye is C(—, o) by definition, which is pointwise isomorphic to T, hence iso-
morphic to e =K T. y(i ® j) is C(—, ¢ ® j), which is isomorphic to yi ® yj by the

specification of products. O
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Lemma 3. We have the following isomorphism.

| j =

Sub(yj®yi) " ~ by product preservation
Sub (y(j ®1i)) " ~ by Yoneda lemma

Tl (j ®1)

It is possible to rephrase the above derivation for II-types. For that, we would
need to define the action of y on types and terms, consider the preservation of
—>— by vy, and also specify a “dependent” Yoneda lemma for Tm. For the sake of

brevity, we omit this, and present the result directly:
I (Tmo A) Bl {u}~ ~ [B[{i>[A[~7} (v{p), q)

In short, depending on an inner domain is the same as depending on an extended
context in C. We expand a bit on the typing of the right hand side. We have

v : || 4, moreover

|B| {j:C} = |I' >TmgA|j — Set

|B| {7+ CH = (7" T J) x Tme j (|A[7)) — Set

1Bl {i> |Al 7} (7 2 [T] (> [A] 7)) x Tme (i > |A]y) (JA] 7)) — Set
7(p) T (e A7)

q : Tme (i > [A[7) ((JA]7)[p))

q : Tme (> [A]y) (JA] (v{p)))

3.5 Simple Signatures in 2LTT

We revisit simple inductive signatures in this section, working internally to 2LTT.

We review the concepts introduced in Chapter 2 in the same order.

Notation 11. In this section we shall be fairly explicit about writing Tmg-s and
transporting along definitional isomorphisms. The simple setting makes it feasible
to be explicit; in later chapters we are more terse, as signatures and semantics get

more complicated.
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3.5.1 Theory of Signatures

Signatures are defined exactly in the same way as before: we have Con : Set, Ty :
Set, Sub : Con — Con — Set, Var : Con — Ty — Set and Tm : Con — Ty — Set.
However, now by Set we mean the outer universe of 2LTT. Thus signatures are

inductively defined in the outer layer.

3.5.2 Algebras

Again we compute algebras by induction on signatures, but now we use inner types
for carriers of algebras. We interpret types as follows:

~A: Ty — Ty, — Set

A X :=Tmg X

(L= A X =TmgX — A X

Elsewhere, we change the type of the X parameters accordingly:

—%:Con — Ty, — Set

~AVarT A = {X Ty} = T4 X —» A4 X
A TmIA - {X Ty, T4 X 5 A4 X
ALSUbTA = {X Ty} = TAX 5 AKX

We also define AlgI™ as (X : Ty,) x ' X.

Example 8. Inside 2LTT we have the following:?
Alg NatSig = (X : Ty,) x (zero : Tmg X) X (suc : Tmg X — Tmg X)

Then, we may assume any cwf C, and interpret the above closed type in the
presheaf model @, and evaluate the result at o and the unique element of the

terminal presheaf K T:
|Alg NatSig| {e} tt : Set

We compute the definitions now. We use the simplified semantics for suc :

Tmg X — Tmy X, since the function domain is an inner type.

|Alg NatSig| {e} tt = (X : Tyce) X (zero : Tmce X) X (suc: Tmg (o> X) X)

3Up to isomorphism, since we previously defined T'4 as a function type instead of an iterated

product type.
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Using the same computation, we get the following for binary trees:
|Alg TreeSig| {o} tt = (X : Tyce) X (leaf : Tmce X) X (node : Tme (o> X > X) X)

We can also get internal algebras in any C category with finite products because

we can build cwfs from all such C.

Definition 37. Assuming C with finite products, we build a cwf by setting Con :=
IC|, Tyl := |C|, SubT'A := C(T", A), TmI"'A :=C(TI', A), Tp A =T ® A and
e := oc. In short, we build a non-dependent (simply-typed) cwf.

Now we can effectively interpret signatures in finite product categories. For

example:
|Alg NatSig| {e} tt = (X : |C|) x (zero : C(e, X)) X (suc: C(e ® X, X))

This is almost the same as what we would write by hand for the specification of

natural number objects; the only difference is the extra ¢« ® — in suc.

3.5.3 Morphisms

We get an additional degree of freedom in the computation of morphisms: preser-
vation equations can be inner or outer. The former option is weak or propositional
preservation, while the latter is strict preservation. In the presheaf model of 2LTT,
outer equality is definitional equality of inner terms, while inner equality is propo-
sitional equality in the inner theory. Of course, if the inner theory has extensional
identity type, weak and strict equations in 2LTT are equivalent for inner types.
We compute weak preservation for types as follows.

M (A : Ty){XO Xy Tyo}(XM : Tmo Xo— Tm() Xl) — A4 Xg— AA X1 — Set

M XMooy oy = Tmo (XM ap = o)

(=AM XMay o = (z: Tme Xo) = AM XM (ap 2) (ag (XM 7))
For strict preservation, we simply change Tmg (X ag = a;) to XM ag = a;. The
definition of morphisms is the same as before:

M : (F : Conl){Xg X TyO} — (Tmo Xo— Tmo Xl) — FA Xo— FA X1 — Set

M XMy = {AM(z : Var T A) — AM XM (4 2) (71 2)

Mor : {T": Con;} — AlgI’ — AlgT" — Set
Mor {T'} (X, 70) (X1, 1) := (XM : Tmg Xo — Tmg X1) x T XM 454,
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We omit here the —™ definitions for terms and substitutions.

3.5.4 Displayed Algebras

We present — only for types below.

D (A TY{XY = (Tmg X — Ty,) — A% X — Set
WP XP o :=Tmy(XPa)
(L= AP XPa = (z:Tme X) (2P : Tmy (XP 2)) = AP XP (ax)

Note that in the presheaf model, inhabitants of Tmg X — Ty, are inner types

depending on contexts extended with the interpretation of X.

Example 9. Assume a closed (X, zero, suc) Nat-algebra in 2LTT. We have the

following computation:

DispAlg {NatSig} (X, zero, suc) =
(XP Tme X — Ty,)
x (zero” : Tmq (XP zero))

x (suc” :(n:TmgX) — Tmy (XPn) = Tmy (X (sucn)))

Let us look at the presheaf interpretation. We simplify functions with inner do-
mains everywhere. Also note that for suc : Tmg X — Tmy X, we get |suc|tt :
Tme (e>n ¢ | X|tt) (| X tt) in the semantics, so a suct application is translated as
a substitution ([suc|tt)[n — |¢] tt].

|DispAlg {NatSig} (X, zero, suc)| {e} tt =
(XP Tye(evn: | X|tt))
x (zero® : Tme o (XP[n — |zero| tt]))

x (suc? : Tme (o> n: [ X|tten? : XP[n = |zero| tt]) (XP[n = (|suc|tt)[n — n]))

To explain (|suc|tt)[n +— n]): we have sucn in 2LTT, where n is an inner
variable, and in the presheaf model inner variables become actual variables in the
inner theory. Hence, we map the n which suc depends on to the concrete n in the

context.
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We can also interpret displayed algebras in finite product categories:

|DispAlg {NatSig} (X, zero, suc)| {e}tt =
(xX? e
x (zero” : C(e, XP))
x (suc? :Cle ® | X|tt ® X7, XP))

While displayed algebras in cwfs can be used as bundles of induction motives
and methods, in finite product categories they are argument bundles to primitive
recursion; this is sometimes also called a paramorphism [MFP91]. In an internal
syntax, the type of primitive recursion for natural numbers could be written more

compactly as:
primrec : (X : Set) - X — (Nat - X — X) — Nat - X

This is not the same thing as the usual recursion principle (corresponding to weak

initiality) because of the extra dependency on Nat in the method for successors.

3.5.5 Sections

Sections are analogous to morphisms. We again have a choice between weak and

strict preservation; below we have weak preservation.

=S (A Ty {X XPHX : (2: Tmg X) — Tmg (XP 2))
— (a: AYX) — AP XP o — Set
I X%a aP :=Tmy (X% a =aP)

(1= A X%aa? = (x:TmyX) = A% X% (az) (a? (X5 2))

3.5.6 Term Algebras

For term algebras, we need to assume a bit more in the inner theory. For starters,
it has to support the theory of signatures. In order to avoid name clashes down

the line, we use SigTy, to refer to signature types, and SigTm, for terms. That is,
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we have

SigTyy : Ty
Cony Ty,
Varg  : Tmg Cong — Tmg SigTy, — Ty,
SigTm, : Tmg Cong — Tmg SigTy, — Ty,

Subg  : Tmg Cong — Tmg Cong — Ty,

together with all constructors and induction principles. We also assume inner
[I-types because we previously defined Sub using functions.

Remark. If we only want to construct term algebras, it is not necessary to
assume inner induction principles. In this section, our goal is to redo the construc-
tions of Chapter 2 without making essential changes, so we just assume everything
that was available there.

We still have ToS in the outer layer. To make the naming scheme consistent,
we shall write outer ToS types as SigTy;, SigTm;, Cony, Var; and Sub;. We have

conversion functions from the outer ToS to the inner ToS:

Definition 38. We have the following lowering functions which preserve all struc-

ture.

1:SigTy, — Tmg SigTy,

4 Cony — Tmg Cong

l:Vari,'A  — Tmg (Varg (I 1) (1 A))
1:SigTm ' A — Tmg (SigTm, (L T') (J 4))
L:SubsT'A — Tmg (Suby (4T) (1.9))

These are called “lifting” or “serialization” in the context of multi-stage program-
ming; see e.g. the Lift typeclass in Haskell [PWK19]. There, like here, the point is
to build object-language terms from meta-level (“compile-time”) values.
Lowering is straightforward to define for types, contexts, variables and terms,
but there is a bit of a complication for Sub. Unfolding the definitions, we need
to map from {A} — VaryAA — SigTm; ' A to Tmg ({A} — Varg(J A)A —
SigTmy (J I') A). It might appear problematic that we have types and variables
in negative position because we cannot map inner types/variables to outer ones.
Fortunately, Sub; I' A is isomorphic to a finite product type, and we can lower a

finite product component-wise.
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Concretely, we define lowering by induction on A, while making use of a case
splitting operation for Vary. We use an informal case operation below, which can
be defined using inner induction. Note that since Varge A is an empty type, case

splitting on it behaves like elimination for the empty type.

da:Subi T'A — Tmg (Subg ({T') (L A))

le o= XA} (x: Varge A).casezof ()

laspo = A{A} (x : Vary (J A | B) A). case z of
vz — |(ovz)

vst — la(ocovs)x

In general, for finite A type, functions of the form A — Tmg B can be represented
as inner types up to isomorphism; they can be viewed as finite products of terms.

Remark. For infinite A this does not work anymore in our system. In [ACKS19],
the assumption that this still works with A = Nat; is an important axiom (“cofi-
brancy of Nat;”) which makes it possible to embed higher categorical structures
in 2LTT. From the metaprogramming perspective, cofibrancy of Nat; implies that
the inner theory is infinitary, since we can form inner terms from infinite collec-
tions of inner terms. We do not assume this axiom in 2LTT, although we will

consider infinitary (object) type theories in Chapters 4 and 5.

We proceed to the definition of term algebras. We fix an € : Cony, and define
T : Ty, as SigTm (L) ¢.

~T: (A :SigTy;) — Tmg (SigTm, (4Q) (J A)) — A4 T

I ti=t

(t— A)Tt:= Au. AT (apptu)

~T:(I': Cony) — Sub; QT —TAT
ITv{A}z = AT (L (vx))

TmAlg, : Alg 2
TmAlg, := Q7' Qid

We omit the —7 interpretation for terms and substitutions for now, as they require

a bit more setup, and they are not needed just for term algebras.
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3.5.7 Recursor Construction

Recall from Section 2.3.1 that recursion is implemented using the —4 interpretation
of terms. Since terms are now in the inner theory, we need to define an inner version
of the same interpretation. We need to compute types by inner induction, so we
additionally assume a Russell-style inner Uy universe. The Russell style means
that we may freely coerce between Tmgy Uy and Ty,. The following are defined the

same way as —“ before.

% Tmg (SigTy, — Ug — Up)

~4 " Tmg (Cong — Uy — Uy)

~A Tmg (SigTmyT' A — {X : U} - T4 X — A1 X)
A Tmg (Subg TA — {X : Up} = T X — A*X)

Since lowering preserves all structure, and —* is defined in the same way in both

the inner and outer theories, lowering is compatible with —# in the following way.

Lemma 4. Assume A : SigTy,, I' : Cony, X : Tyy, v : I'* X and ¢ : SigTm, ' A.
We have the following:

o (A%, AL): Tmg((LA)AX) = A4 X
o (M4, TL): Tmp (D)1 X) ~T4X
o thy = A% (1A (T4 7))
Proof. By induction on I', A and t¢. O

We construct recursors now, yielding strict algebra morphisms. We assume
(X, w) : AlgQ. Recall that w : Q1 X, thus Q2 w : Tmg (({ 2)* X). We define
R:TmgT — Tmo X as Rt := 4 (04 w).

(A SigTy) (¢ Tmo (SigTmg (1) (LA))) — AMR (AT 1) (A4 (4 (2L w)))
B t QA w) =4 (1 Q1 w))

(1 — At = Au. A% (apptu)

~B(T: Cony)(v:Suby QT) = TM R(I'Tv) (v1w)
Iy {Atr = AR (| (va))
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In the proof obligation for t4 (24 w) =14 (4 (Q2 w)), 14 computes to the identity
function; note that (4 : Tmg X — Tmg X. Hence the equality becomes reflexive.
In "2y {A}z := AR (| (vx)), we have that

AR (L(va)) s AMR(AT (L(va))) (AL (Lv2)* (L w)))
Hence by Lemma 4, we have
AR (Lva)) : AYR(AT (L(ve)) (ve)t w)
Hence, by the definition of —# for substitutions:
AR (L(va) s AMR(AT (L(v2))) (A wa)
Which is exactly what is required when we unfold the expected return type:

B (T : Cony)(v:Suby Q) — TM R (I v) (v w)
B (T : Cony)(v: Suby QT) — {A}(x : Var, T A) — AMR (AT (L (vx))) (v*wa)

The recursor is defined the same way as in Definition 10:

Recq : (alg : Alg Q) — Mor TmAlg, alg
Recq (X, w) := (R, O Qid)

3.5.8 Eliminator Construction

D

For induction, we need to additionally define —* in the inner layer.

P Tmg (A= SigTy ) {X} = (Tmeg X — Up) = A% X — Uy)
P Tmg (T Cong){ X} — (Tme X — Ug) — T'* X — Up)
D Tmg ((t: SigTmy T A) = TP XP vy - AP XP (1 5))

P Tmg ((0:Subg T A) = TP XP~r — AP XP (64 7))

Lemma 5. We have again compatibility of lowering with —. Assuming (X, ~) :
AlgT, (XP, ~P) : DispAlg (X, 7), t : SigTm; T' A, and o : A* X, we have

o (AL AD): Tmo ((JA)P XP (AL a)) ~ AP XD o
o (T2, T2): Tmo ((LT)? XP (T4 7)) = TP X7

o 797 = AZ (L) (T247))
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tDD

The equation for ¢ v~ is well-typed because of the term equation in Lemma 4.

Proof. Again by induction on I'; A and t. m

We also need to extend —7 with action on terms. Note that we return an inner
equality, since we can only compute such equality by induction on the inner term

input:
T . (4. : A (AT _ LA (pA
T (1 SigTmg (L) (JA4)) (v < Suby Q) = Tmy (4 (A7 ([} = 4 (T2 )
We assume (XP, w?) : DispAlg TmAlg,, and define elimination as follows:

E:(t:TmgT) — Tmg (X7 1)
Et:=t?(QF wP)

This definition is well-typed only up to tTid : Tmq (¢ = t4 (Q2 (QT Qid))). Since
t7id is an inner equality, in a fully formal intensional presentation we would have
to write an explicit transport in the definition.

We shall skip the remainder of the eliminator construction; it goes the same
way as in Definition 11. Intuitively, this is possible since the inner theory has all
necessary features to reproduce the eliminator construction, and lowering preserves
all structure.

Since T yields inner equations, this implies that the displayed algebra sections
returned by the eliminator are weak sections, i.e. they contain S-rules expressed in

inner equalities.

3.5.9 Strict Elimination

If we want to use term algebras in generic programming, having only weak (-
rules in elimination is inconvenient. We make a brief digression here, to define an
alternative eliminator which computes strictly. The idea is to specialize the notion
of displayed algebras to the term algebra, and likewise give a specialized definition
for the eliminator function. We fix 2 : Con; and X® : Tmq (SigTm, (1) ¢) — Ty,.

~D (A SigTy;) — Tmg (SigTm, (1.Q) (L A)) — Ty,
P XPa:=XPa

(1t — AP XPa = (u:SigTm, Qi) = XPu— AP XP (au)
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QF : Set
QP .= {A: SigTy, }(x : Tmg (Varg (4Q) (L A))) — Tmg (A® (varx))

Elim : {A:SigTy,} = QF — (t: Tmg (SigTm, (1) (1 A))) — Tmg (AP t)

D

Dvarz) =wPa

Elimw

Elimw? (apptu) := Elim w” ¢t u (Elim w” )

Now, Elim {¢} has type QP — Tmq ((t : SigTmg (L Q)¢) — XPt). Since QP is a
finite product of inner types, it’s isomorphic to an inner type, so we can extract a

purely inner eliminator:
Elim : (X : SigTm, (19Q) ¢ — Up) — QP — (¢ : SigTm, (1Q) 1) — XP¢.

Here, QP specifies induction methods, and the eliminator is defined by inner induc-
tion on terms. Compare this to the previously constructed weak eliminator, where
we had to transport the result over ¢7id. The extra transport precluded strict
B-rules in that case, since transports do not definitionally compute on inductive
constructors in the inner theory.

However, the weak eliminator construction is overall more regular and scales
better to more complicated theories of signatures, as we will see in Sections 4.4
and 5.6. Also, in these Sections we will assume equality reflection everywhere so
weak and strict (-rules will coincide. Another advantage of the weak eliminator
construction is that it builds on definitions that are already available from the
semantics of signatures. In contrast, strict eliminators should be connected back
to the semantics in a separate step: we should show that strict elimination yields
a displayed algebra section, and that the two definitions of displayed algebras are

equivalent. We do not detail these here.



CHAPTER 4

Finitary Quotient Inductive-Inductive Signatures

In this chapter we bump the expressive power of signatures by a large margin,
and also substantially extend the semantics. However, we keep the basic approach
the same; indeed its advantages become apparent with the more sophisticated
signatures.

We use two different setups for semantics in this chapter.

e In Sections 4.1-4.2.7 we work in 2LTT, thereby getting a generalized se-
mantics for signatures. Here we keep details about universe levels to the

minimum.

e In Section 4.4, we work in an extensional type theory with cumulative uni-
verses. This is more suited for the term algebra construction, where (as we
will see) 2LTT does not bring any advantage, but we do need to be more

precise about universes.

4.1 Theory of Signatures

Signatures are once again given by contexts of a type theory, but now it is a
dependent type theory, given as a cwf with certain type formers, in the style of
Section 3.2.

Metatheory and terminology

We work in 2LTT with Ty, and Tmg, and make the following assumptions:

e Ty, is closed under T, X and extensional identity —=—. The inner identity

reflects the outer one.

95
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e The outer identity — = — is also extensional; it reflects strict equality in
some unspecified metatheory outside 2LTT. This justifies omitting transports

along —=— in our notation.

In the following we specify models of the theory of finitary quotient inductive-
inductive signatures. The names involved are a bit of a mouthful, so we abbreviate
“finitary quotient inductive-inductive” as FQII, and like before, we abbreviate
“theory of signatures” as ToS. In this chapter, by signature we mean an FQII
signature unless otherwise specified.

Additionally, we abbreviate “quotient inductive-inductive types” as QIIT, and
we may qualify it to FQIIT if it is finitary. A type in this sense is simply the initial
algebra for a given FQII signature. We shall use this naming in the rest of the
thesis; an inductive type is an initial algebra for a signature. Also, we use syntax

as a synonym for initial algebra.
Definition 39. A model of the theory of signatures consists of the following.

e A cwf with underlying sets Con, Sub, Ty and Tm, all returning in the outer
Set universe of 2LTT.

A Tarski-style universe U with decoding El.

An extensional identity typeld: TmI'A — TmI' A — Ty I, specified by
(reflect, refl) : TmT (Idtu) ~ (t = u).

An internal product type II : (¢ : TmI'U) — Ty(I'> Ela) — TyT,
specified by (app, lam) : TmI'(Ila B) ~ Tm (I'> Ela) B.

An external product type II®* : (Iz : Ty,) — (Ix — Tyl) — TyT,
specified by (app®?, lam®®) : Tm [ (1™ [z B) ~ ((i : Iz) — Tm T (Bi)).

At this point we only have a notion of model for ToS, but as we will see in
Chapter 5, ToS is also an algebraic theory, more specifically an infinitary QII
one. It is infinitary because II®* and lam®* allow branching which is indexed over
elements of arbitrary [z : Ty, types.

Because of the algebraic character of ToS, there is a category of ToS models
where morphisms strictly preserve all structure, and the initial model corresponds
to the syntax. We will make this precise in Chapter 5. We also assume that the

ToS syntax exists.
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Definition 40. An FQII signature is an element of Con in the syntax of ToS.

We review several example signatures in the following, using progressively more
ToS type formers. We also introduce progressively more compact notation for
signatures. As a rule of thumb, we shall use compact notation for larger and more
complex signatures, but we shall be more explicit when we specify models of ToS

later in this chapter.

Example 10. Simple inductive signatures can be evidently expressed using U and
II. By adding a single U to the signature, we introduce the inductive sort, while

IT adds an inductive parameter to an entry.

NatSig :=e> (N : U)> (zero : EIN) > (suc : II(n : N)(EIN))

TreeSig := o> (T : U) > (leaf : EIT) > (node : 11(ty : T)(I(ty : T)(EIT)))
Observe that the domains in II are terms with type U, while the codomains are
proper types.

Notation 12. We write non-dependent product types in ToS as follows.
e a= Bforll(_:a)B.

o Iz =5 B for II®* [z (A .. B).

Using this notation, we may write suc : N = EIN and node : T'= T = EIT.

Notation 13. The “categorical” application app with explicit substitutions is a bit

inconvenient. Instead, we simply write whitespace for IT and II®* application:

tu:= (appt)[id, u]

tu:= (app™*t)u
Example 11. We may have any number of sorts by adding more U to the signa-
tures. Moreover, sorts can be indexed over previous sorts. Hence, using only U, El

and II, we can express any closed inductive-inductive type [NF13]. The following

fragment of the the signature for categories is such:
o> (0bj : U) (Hom : Obj = Obj = U) > (id : I1(i : Obj) (El (Homi1)))

These inductive-inductive signatures are more flexible than those in prior litera-

ture [NF13], since we allow type constructors (sorts) and point constructors to
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be arbitrarily mixed, as opposed to mandating that sorts are declared first. For

example:
o>(A:U)>(a:ElIA)>(B: A= U)>(C:Ba=U)

Here C' is indexed over B a, where a is a point constructor of a, so a sort specifi-

cation mentions a point constructor.

Example 12. Id lets us add equations to signatures. With this, we can write

down the full signature for categories:

Obj :U)

Hom : Obj = Obj = V)

id (i Obj) (El (Homi1)))

(ijk: Obj)(Homjk = Homij = El(Homik)))
(ij: Obj)(f : Homij) (ld (compiij f (idi)) f))
(ij: Obg)(f : Homij)(ld (compij j(id j) f) [))
(
(

===

igkl:Obj)(f:Homjl)(g: Homjk)(h: Homiyj)
Id (compijl(compjklfg)h)(compiklf(compijkgh))

Now, this is already rather hard to read, even together with a compressed notation

for multiple II binders.

Notation 14. For more complex signatures, we may entirely switch to an internal
notation, where we mostly reuse the conventions in the metatheories, including
implicit arguments and implicit quantification. We use (x : a) — B for internal
products, (z : A) =B B for external products, but we still write Id for the identity
type and make U and El explicit. In this notation, a signature is just a listing of

binders. The category signature becomes the following:

Obj :U

Hom : Obj — Obj — U

id  : El(Homi1)

—o— :Homjk — Homij — El(Homik)
idr :ld(foid) f

idl :ld(ido f) f

assoc: ld(fo(goh))((fog)oh)
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Example 13. The external product type makes it possible to reference inner types
(in 2LTT) in signatures. Here “external” is meant relative to a given signature,
and refers to types and inhabitants which are not introduced inside a signature.
For example, we give a signature for lists by assuming A : Ty, for the (external)

type of list elements:

List : U
nil : ElList

cons : A —B List — El List

Hence, “parameters” are always assumptions made in the metatheory. We can
also index sorts by external values. Let us specify length-indexed vectors now; we
keep the A : Ty, assumption, but also assume that Ty, has natural numbers, with

Natg : Ty,, zeroy and sucg.

Vec : Naty =B U

nil : El (Veczerog)

cons : (n : Natg) =% A —F* Vecn — El (Vec (sucyn))

Example 14. We can also introduce sort equations using Id: this means equating
terms of U, i.e. inductively specified sets. This is useful for specifying certain
strict type formers. For example, a signature for cwfs can be extended with a

specification for strict constant families.

Con : U
Sub : Con — Con — U
Ty :Con— U

Tm :(I':Con) » Ty’ » U
K :Con—{I': Con} — EI(TyI)
Kspec 1 1d (TmT' (KA)) (SubI' A)
The equation for Russell-style universes is likewise a sort equation:

Univ : EI(TyI)
Russell : Id (Tm I Univ) (Ty )
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Example 15. As we mentioned in Definition 25, there is a signature for presheaves,
so let us look at that now. Assume a category C in the inner theory; this means

that objects and morphisms of C are in Ty,.

Obj :|C|—=F*U

Hom :C(i, j) —5* Objj — EI(Obji)
Homyq : Id (Homid z) =

Hom, : Id (Hom (f o g) ) (Hom f (Hom g x))

We depart from the sugary naming scheme in Definition 25, and name the action
on objects Obj and the action on morphisms Hom. When we give semantics to this
signature in Section 4.2, we will get as algebras functors from C°P to the category
of inner types. That category has elements of Ty, as objects and Tmy A — Tmy B

functions as morphisms.

Strict positivity

Only strictly positive signatures are expressible. Similarly to the case with simple
signatures, there is no way to abstract over internal products, since internal prod-
ucts are indexed over U-small types, and U has no type formers at all. With IT5<,
we can abstract over functions, but only those which are external to a signature

and do not depend on internally specified constructions.

Limitation: nested induction

Nested induction means that external type functions may be applied to expressions
internal to the theory of signatures. This is not possible in any of the signatures in

this thesis. A common example is rose trees, assuming external List : Set — Set:

Tree : Set

node : List Tree — Tree

The List Tree expression is not representable in a signature; the List function is
external, while Tree would be an internal sort. This style of inductive definition re-
quires reasoning about the polarity of all external type functions: only the strictly
positive Set — Set functions should be allowed. With general type functions we
would also need to track polarity of multiple parameters, or even higher-order

polarity.
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Many use cases of nested induction can be removed by “including” the external
type constructor into the signature. In the case of rose trees, this means defining

lists and trees mutually:

List : U
Tree : U
nil  : ElList

cons : Tree — List — ElList

node : List — El Tree

Of course, nested induction would be still desirable because of the code reuse that

it enables.

4.2 Semantics

4.2.1 Overview

For simple signatures, we only gave semantics in enough detail so that notions of
recursion and induction could be recovered. We aim to do more now. For each

signature, we would like to have
1. A category of algebras, with homomorphisms as morphisms.
2. A notion of induction, which requires a notion of dependent algebras.
3. A proof that for algebras, initiality is equivalent to supporting induction.

We do this by creating a model of ToS where contexts (signatures) are cate-
gories with certain extra structure and substitutions are structure-preserving func-
tors. Then, ToS signatures can be interpreted in this model, using the initiality of
ToS syntax (i.e. the recursor).

Our semantics has a type-theoretic flavor, which is inspired by the cubical
set model of Martin-Lof type theory by Bezem et al. [BCH14|. The idea is to
avoid strictness issues by starting from basic ingredients which are already strict
enough. Hence, instead of modeling ToS types as certain slices and substitution
by pullback, we model types as displayed categories with extra structure, which

naturally support strict reindexing/substitution.
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We make a similar choice in the interpretation of signatures themselves: we use
structured cwfs of algebras, where types correspond to displayed algebras. This
choice is in contrast to having finitely complete categories of algebras. Preliminar-
ily, the reason is that “native” displayed algebras and sections allow us to compute
induction principles strictly as one would write in a type theory. In fact, in this
chapter we recover exactly the same semantics for simple signatures that we al-
ready specified. In contrast, in finitely complete categories there is no primitive
notion of displayed objects, and we can only specify induction principles up to
equivalences.

This issue is perhaps not relevant from a purely categorical perspective, but we
are concerned with eventually implementing QIITs in proof assistants. If we do
not compute induction principles here in an exact way, we do not get them from

anywhere else.

4.2.2 Separate vs. Bundled Models

M D and —° interpretations of signatures separately,

Previously, we defined —4,
by doing induction anew for each one. Formally, this amounts to giving a plain
model of ToS in order to define —4, but then giving three displayed models of ToS
to specify the other interpretations because they sometimes need to refer to the
recursors or eliminators of other interpretations.

For example, —“ : Con — Set while —? : (I' : Con) — I'* — Set, so displayed
algebras already refer to —“, which is part of the recursor for the corresponding
model.

However, this piecewise style can be avoided: we can give a single non-displayed
model which packs everything in a >-type, yielding just one interpretation function

for signatures. Let us call that function — now:

M Con — (A : Set)
X (M:A— A— Set)
X (D : A— Set)

x (S :(a:A) = Da — Set)

Note that it is often not possible to merge multiple recursors/eliminators by pack-
ing models together. For example, addition on natural numbers is defined by

recursion, and so is multiplication; but since multiplication calls addition in an
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iterated fashion, it is not possible to define both operations by a single algebra.
Nevertheless, merging does work in our case. We will, in fact, get a formal vocabu-
lary for merging models (and manipulating them in other ways) from the semantics
of ToS itself.

In simple cases, and in Agda, the piecewise style is convenient, since we do not
have to deal with ¥-s. However, for larger models, important organizing principles
may become more apparent if we bundle things together.

In the following, we shall define a model M : ToS such that its Con component
is a bundle containing all A, M, D, S components, plus a number of additional
components. We present the components of M in the same order as in Definition
39. There is significant overlap in names and notations, so we use bold font to
disambiguate components of M from components of other structures. For example,
we use o : SubI' A to denote a substitution in M, while there could be Sub-named

components in other structures under consideration.

4.2.3 Finite Limit Cwfs

We define Con : Set as the type of finite limit cwfs (flewfs). Recall that this
specifies the objects of the underlying cwf of M. In the following we specify flcwfs

and describe some internal constructions.

Definition 41. We define flewf : Set as an iterated X-type with the following

components:

1. A cwf with Con, Sub, Ty, Tm all returning in Set. Remark: this implies that
flewf : Set is in a larger universe than all of these internal components. We

continue to elide universe sizing details.
2. X-types.
3. Extensional identity type Id with refl and reflect.
4. Strict constant families K.

Definition 42. We abbreviate the additional structure on cwfs consisting of X,

Id and K as fl-structure.

We recover previous concepts as follows. Assuming I signature, we get an flewf

by interpreting I' in M. In that flewf we have
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Con as the type of algebras.

Sub as the type of algebra morphisms.

Ty as the type of displayed algebras.

Tm as the type of displayed algebra sections.

From this, notions of initiality and induction are apparent as well. Initiality is the

usual categorical notion. Also note that the unit type can be derived as K.

Definition 43. Assuming I' : Con in a cwf, we define the induction predicate

on objects:

Inductive : Conp — Set
Inductivel’ := (A : Typ ') = Tmpr T A

In our semantics this will say that an algebra is inductive if every displayed algebra

over it has a section. We also know that induction and initiality are equivalent.

Theorem 1. We assume an flewf T' with weak constant families. An object
I' : Cony supports induction if and only if it is initial. Moreover, induction and

matiality are both mere properties.

Proof. First, we show that induction implies initiality. We assume I" : Con,
ind : Inductivel' and A : Con. We aim to show that there is a unique in-
habitant of SubI' A. We have ind (KA) : TmI'(KA), hence appg (ind (KA)) :
SubI" A. We only need to show that this is unique. Assume ¢ : SubI' A. Now,
ind (Id (lamg 9) (ind (KA))) : TmI' (Id (lamk §) (ind (K A))), and it follows by equal-
ity reflection that lamg 6 = ind (KA), thus 6 = appg (ind (KA)).

Second, the other direction. We assume that I' is initial, and also A : Ty T,
and aim to inhabit TmT' A. By initiality we get a unique o : SubT (I'> A). Now,
qlo] : TmI' (A[p o o]), but since po o : SubI'T", it must be equal to id by the
initiality of I". Hence, q[o] : Tm T A.

Lastly: it is well-known that initiality is a mere property, so let us show the
same for induction. We assume ind, ind’ : Inductivel’ and A : TyI". We have
reflect (ind (Id (ind A) (ind’ A))) : ind A = ind" A. Since A is arbitrary, by function

extensionality we also have ind = ind’. ]

Theorem 2. TmI' A in an flcwf is propositional when T' is initial.
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Proof. Assuming t, u: TmI' A, we have reflect (ind (Idtw)) : t = u. O

Note that the above proofs do not rely on Y-types in the flewf, so why do we
include them in the semantics? One reason is the prior result by Clairmabault
and Dybjer [CD14], that a slightly different formulation of flewfs is biequivalent to
finitely complete categories. More concretely, in ibid. there is a 2-category of cwfs
with X, Id and “democracy”, the last of which is equivalent to the weak formulation
of constant families. Then, it is shown that this 2-category is biequivalent to the
2-category of finitely complete categories. Thus, including ¥ is a good deal, as
this allows us to connect our semantics back to finitely complete categories, which
are more common in categorical settings.

We recover finite limits in an flewf as follows. The product of I' and A is
given by I'> KA, and we get projection and pairing from context comprehension.
The equalizer of o, § : SubI' A is given by I'>Id o 6, which is well-typed because
morphisms can be viewed as terms, e.g. ¢ : TmI'(KA). The unique morphism
out of the equalizer is p : Sub(I'>1d o d) I'.

Our Definition 41 for flewfs is not exactly the same as in [CD14] because our
constant families are strict. However, this only strengthens our semantics in this
section, since weak constant families can be trivially recovered from strict ones.

We present some results from the existing literature in the following.

Definition 44 (Type categories, c.f. [CD14, Section 2.2]). We work in an flewf
with weak constant families. For each I' : Con, there is a category whose objects
are types A : TyI', and morphisms from A to B are terms ¢ : Tm (I' > A) (B]p]).
Identity morphisms are given by q : Tm (I' > A) (A[p]), and composition ¢ o u by
t[p,u]. The assignment of type categories to contexts extends to a split indexed
category. For each o : SubT' A, there is a functor from Ty A to Ty ', which sends
Ato Alo]and t: Tm (I > A) (B]p]) to t[o op,q].

Notation 15.

e In any cwf, we use 0 : I' ~ A to indicate that ¢ : SubI' A is an isomorphism

with inverse o~ 1.

e A type isomorphism, written as t : A ~ B is an isomorphism in a type

category, with inverse as t~1.

Theorem 3 (Equivalence of types and slices, c.f. [CD14, Section 2.2]). Assume
that we work in an flewf T' with weak K. For each T" : Con, the type category Ty’

is equivalent to the slice category T'/T .
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Remark. In the flewf of sets where types are A — Set families, the above
theorem yields the equivalence of A — Set and (B : Set) x (B — A). This is
sometimes called the “family-fibration” equivalence. It is also a notable motivating
example for univalence in type theory: it is not an isomorphism of sets, but only
an equivalence up to isomorphism of sets. So this is an example for an equivalence
which quite naturally arises even if we only care about sets, but one which is not
covered by set-level univalence, and additionally requires univalence for groupoids,

if we want to prove it as a propositional equality.

4.2.4 The Cwf of Finite Limit Cwfs

The next task is to define the cwf part of M. We already know that objects are

flewfs.

Category

A morphism o : SubT' A is an algebra homomorphism, viewing flewfs as alge-
braic structures. Hence, o includes a functor between underlying categories, but

it also maps types to types and terms to terms, and strictly preserves all structure.
Notation 16. We may implicitly project out the underlying maps from o. Hence,
we have the following four maps:

: Conr — Cona

: Subr I' A — Suba (o T') (6 A)

:Typ [ = Ty (1)

:Tmpl'A — Tma (1) (0 A)

Q9 9 9 9

We list some of the preservation equations as examples of usage:

c(l'vA)=0cTro A
o (Alo]) = (o Ao 0]
o (t[o]) = (o t)[o 0]
o (LAB) =X (o A)(oB)

) =
o (proj, t) = proj, (o' t)

Above, we could have also included subscripts indicating the I" or A flcwf, as in

O o = ep; but these are quite easily inferable, so we omit them.
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Identity morphisms and composition are defined in the evident way using
identity functions and function composition in underlying maps, and they satisfy
the category laws.

The terminal object e : Con is given by having Con, := T, Sub,’'A := T,
Ty, I':= T and Tm,I" A := T, and all structure and equations are defined trivially.

Family structure

A type A : TyT is a displayed flewf over I'.  As we have seen before, displayed
algebras can be computed as logical predicate interpretations of algebraic signa-
tures. Every A component lies over the corresponding I' component. Also note
that a displayed flewf includes a displayed category, for which some results have
been worked out in [AL19].

Notation 17. In situations where we need to refer to both “base” and displayed
things, we give underlined names to contexts, substitutions, types and terms in a
base flewf. For example, we may have [ : Conr living in I' : Con, and I" : Conaq I’
living in a displayed flewf over I'. We only use underlining on 2LTT variable names,
and overload flewf component names for displayed counterparts. For example, a

Con component is named the same in a base flewf and a displayed one.

Concretely, a displayed flewf A over I' has the following underlying sets, which

we call displayed contexts, substitutions, types and terms respectively.

Cong4 : Conp — Set

Suby : CongI' = Cong A — Subr I’ A — Set
Ty, :Congl — Typ L — Set

Tmy : (I': Conal) 5> Ty, T’A— Tmp [ A — Set

We list several components of A below; note how every A operation lies over the
corresponding I' operation. In our notation with implicit arguments, equations
in A can be written the same way as in I', but of course there is extra indexing
involved, and the displayed equations are well-typed because of their counterparts

in the base.

idA SUbAPPId_I‘
— 04 — SUbAAEg—>SUbAFAé—)SUbAFE(goré)

Id|A :idAOACTEJ
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idrg :0o4idg =0

oA : Congy er

—>g—:(I':Congll) > Ty, TA— CongI'(Cop A)

—[~]a : TyaAA—SubsaT'Ag — Ty, I' (Alg]r)

—[-]a :TmaAAt — (0:SubaT'Ag) = Tmal (Alo]a) (t[a]r)

Id o :TmaT At -5 TmalT Au— Ty, T (ldptuw)

Ka :Cong A = {I": Cona '} —» Ty, ['(Kr Q)

Ya (A Ty, TA) > Ty, (Tpa A)B— Ty, I'(Er AB)
In the following we will often omit r and 4 subscripts on components; for example,
in the type Con4 e, the o is clearly a base component in T'.

A substituted type A[o] : Ty is defined as follows, for A : Ty A and o :

SubT’ A. We simply compose underlying functions in o with the underlying

predicates in A:

Congpe1 :=Cony (o)
Suba) Ao :=SubsT'A(o o)
Tya A =Tyl (o A)

TmA[U]FAi = TmAFA(O'i)

It should be clear that A[o]| thus defined still supports all displayed flewf struc-
ture. For example, the displayed contexts in A[o] are elements of Cony (o L), but
since o preserves all I'-structure, we can also recover all displayed structure. For
example, if " is o, we have e = o, and we can reuse e4 : Cong e to define the
displayed empty context in A[o], and we can proceed analogously for all other
structure in Afo].

Additionally, type substitution is functorial, i.e. Aid] = A and A[o 0 d] =
Alo][6]. This holds because the underlying set families are defined by function
composition.

Remark. Types could be equivalently defined as slices, as objects in flewf /T,
and type substitution could be given as pullback, but in that case we would run
into the well-known strictness issue, that type substitution is functorial only up
to isomorphism. This is not a critical issue, as there are standard solutions for
recovering strict substitutions from weak ones [KLV12, LW15, CD14]. But if we
ever need to look inside the definitions in the model, using displayed algebras yields

less encoding overhead than strictifying pullbacks.
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Aterm t: TmI' A is a displayed flewf section, which again strictly preserves
all structure. We use the same notation for the action of t that we use for Sub.

We have the following underlying maps:

!

: Conp) — Conys I

:Subpr T'A) — Suby (tT) (tA) o
tTyp ) = Ty, ((1) A
t:Tmpl'A) - Tmuy (t1) (L A) L

S}

~ o~ o~
[

A substituted term t[o]| for t : TmA A and o : SubT' A is again given by

component-wise function composition.

An extended context I'> A is the total flewf of A. This is defined by combining
corresponding underlying sets with >-types:

Conrpa = (L : Conp) x Cona I'
Subrpa (T, T) (A, A) := (g : Subr T A) x Subsa T Ao
Trpa (L, 1) Tyr D) x Ty, T'A

=(4
Tmrea (I, T) (A4, A) :E( TmrLA) x TmaT' At

All structure is defined pointwise, using I'-structure for first projections and A-
structure for second projections. I' > A may be viewed as a dependent generaliza-

tion of products of flewfs.

Comprehension structure follows from the above definition: p is component-
wise first projection, q is second projection and substitution extension —,— is

pairing.

With this, we have a cwf of flcws. Remark: the theory of flcwfs is itself algebraic
and has a finitary QII signature. Hence, if we succeed building semantics for
finitary QII signatures, we get “for free” an flewf of flewfs. Of course, we cannot
rely on this when we are in the process of defining the M model in the first place.
Checking that the M model indeed works, is the somewhat tedious task that we

have to perform once, in order to get semantics for any other finitary QII theory.
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4.2.5 Type Formers

Strict constant families

This was not included in the ToS specification, but it is quite useful, so we shall

define it. KA : Ty I is defined by ignoring I" inhabitants in all underlying sets:

Conkall := Cona
SubkaT'Ag :=SubaT'A

TmKAFA§ = TmAFA

All structure is inherited from A. There is also a type substitution rule, expressing
that for o : SubT'E, we have (K{Z} A)[o] = K{T'} A. This follows immedi-
ately from the above definition and the definition of type substitution, since the

base inhabitants are ignored the same way on both sides of the equation. We also
need to show TmI' (KA) = SubI' A. This again follows directly from the K

definition. From K, we get
e The unit type, defined as Ke : TyT.
e Categorical products of I' and A, defined as T' > K A.

e The ability to define closed type formers as elements of Con.

Universe

Similarly to what we did in Definition 32, we define U as a context, and use K
later to get the universe as a type. U : Con is defined to be the flewf where objects

are inner types, and morphisms are outer functions between them:

Cony =Ty,
Suby'A:=Tmel' = Tmpg A
TyyI' =Tmel' = Ty,

Tmyl'A :=(y: Tmgl') = Tmg (A7)

Substitution for types and terms is defined by function composition. The empty

context is defined as the inner unit type T, and context extension 'y A is defined
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as (7 : ') x A~ using inner 3. We can also define ¥y and Idy using inner 3 and
identity.

For constant families, we do not need any additional assumption in the inner
theory, since it can be defined as Ky {I'} A := A, and Suby ' A = TmyT" (Ky Q)

follows immediately.

For a : SubT' U, we have to define Ela : TyI'. This is given as the displayed
flewf of elements of a.

Background: from any functor F': C — Set we can construct the category of
elements [F, where objects are in (i : |C|) X F¢ and morphisms between (¢, z)
and (j, y) are in (f : C(4, j)) X (F fa = y). If we take the second projections of
components in [F, we get the displayed category of elements, which lies over C.
We may also call this a discrete displayed category, in analogy to discrete categories
whose morphisms are trivial.

We extend this to flewfs in the definition of Ela. With this definition, I'> El a

will yield the flewf of elements of a.

Cong oI’ :=Tmg (al)
Subgio 'Ac:=acl'=A

TmE|aI‘A1_5 = G,ZF =A
Let us check that we have all other structure as well.

e For contexts and types, the task is to exhibit elements of a lying over specific

base contexts and types.

e For terms and substitutions, the task is to exhibit equations which specify

the action of a.

e Equations between terms and substitutions are trivial because of UIP (we

need to show equations between equality proofs).

We summarize below the additional structure on top of the displayed category

part of Ela.

e For eg, : Congq e, the type can be simplified along the definition of Congq

and structure-preservation by a to Tmg To. Hence, eg, := tty is the unique
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definition. For € : Subg 4 " eg1q €, we have to show a el = tty, which holds

by the uniqueness of tty.

For I'bgg A @ Congg (> A), the target type unfolds to Tmg (a (I > A)),
which in turn simplifies to Tmg ((v: al') x @ Av). Since I' : Tmg (a ') and
A:Tmy(a AT), we define I'>gq A as (I, A).

For comprehension, we have to show the following, after simplifying types:

P rap(lLA)=T
q raq(l, A)=A
(o,t):a(g, t)T = (A, A)

[Ke]

For p and q, equations follow from preservation by a. For pairing, the goal
further simplifies to (ac T, atT') = (A, A). Then, the first and second

components are equal by the ¢ and ¢ hypotheses.

Assuming A : Tyg,AA and o : Subg ' Ag, we aim to define Alo]g, :
Tymao I (Alg]). Simplifying types, A : Tmg(aAA), 0 : acl' = A and the
target type is Tmg (a (A[g]) '), which is the same as Tmg(a A(acT)), by
the preservation of —[—] by a. Hence, by the ¢ assumption, the target type

is Tmp (a AA), so we give the following definition:
Alolglg = A

This is clearly functorial; moreover, substitution rules for the other type

formers hold trivially.

Term substitution is given by transitivity of equality.

Forldgqtu: Tyg, I (Idtw), the goal typeis Tmg (a (Idtu) I'), hence Tmg (at T’ =

auTl). Thisholdsbyt:atl' = Aandu: atl’ = A. Reflexivity and equality
reflection are trivial by UIP.

For A : Tyg,T'A and B : Tyg,(I'> A) B, we aim to define ¥gqa AB :
Tyg o I (X AB), hence

Seie AB: Tmg(a(SAB)T)

YeaAB:Tmg((A:aAT) xa B (T, A))

ZEHIAB = (A, B)
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Projections and pairing proceed analogously to what we did for comprehen-

sion.

o For Kgg A : Tyg,, I'(KA), the target type simplifies to Tmg (a A), hence we

have Kg o A := A. For the specifying sort equation of K, we have to show

SUbE|aFAg = TmE|aF (KEIa A)g

where g : Sub’ A but at the same time ¢ : Tm [ (K A) because of the K sort

equation in the base. Fortunately, both sides simplify to ac ' = A.

We still have to check (Ela)[o] = El (a o o), the naturality rule for El. We only

have to check equality of underlying sets, Con and Ty formers, since terms and

substitutions are equal by UIP. For underlying sets, both sides compute to the

following;:

Conl’
SubT'Ag =
Tyr'A

TmIT At

Since o also strictly preserves all structure, and we simply replace a action by the

composite a o o action, it is straightforward to check that Con and Ty formers are

also the same on both sides.

At this point, we have U : Con and El : SubT'U. Let us rename them to U’

and El' respectively, and define the usual “open” versions:

U: Tyl
U.=KU’

Identity

El: TmI'U —» TyI'

Ela :=El'a

Assuming ¢, u : TmT' A, extensional identity Id ¢t u is defined as component-wise

equality:

Conygto I

Sub.dtu I'A
Tyt I'A

Tm|dtuFAZ =

=tl'=ul
g =ta=ug
=tA=u
tt=ut
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All other structure follows from structure-preservation of ¢ and u. For the sim-
plest example, ejq¢. : to = we holds because t and w both preserve o. The rule
(Idtu)[o] = Id (t[o]) (u[o]) is straightforward to check: we only have to look at
the underlying sets, where e.g. both sides have Con' = (t (¢ ') = u (o). It is
also evident that TmT (Id¢w) is equivalent to ¢t = wu, that is, we have reflexivity

and equality reflection.

Internal product type

Fora: TmI'U and B : Ty (I'> Ela), we aim to define ITa B : TyI'. This is a
dependent product of displayed flewfs, indexed over a discrete domain. Discrete-
ness is critical: since morphisms in El @ are proof-irrelevant and invertible (because
they are equations), we avoid the variance issues that preclude general II-types in
the cwf of categories [Joh02, Secion A1.5].

The direct definition would be to define underlying sets as products, indexed

over corresponding components in El a:

Contra = (y:al)— Cong (L, )
Subrres'Ac:={v:al}{6:aA}(0o:Subgsyda) = Subg (I'y) (Ad) (o, 0)
Tynegl'4A ={y:al}(a:ady)— Tyg (') (4, o)

Tmaes At ={y:al'}{a:aAy}{t: Tmgeydt) = Tmp (I'y) (Aa) (¢, 1)

But just like in Definitions 4 and 6, we can contract the Sub and Tm definitions,

since Subgiavdo = (acy =6) and Tmgvat = (aty = a).

Conmra =(y:al)— Cong (L, v)
Subpepl'Acg:=(y:al) — Subg (I'y) (A(acy)) (g, refl)
TWnepl'A  ={y:al}(a:ady) =Ty () (4 a)

Tmaee At == (y:al) = Tmp (I'v) (A(aty)) (¢, refl)

With the contracted definition, Sub and Tm are only indexed over displayed objects
and types, but not over displayed morphisms or terms anymore. So it is apparent
that we cannot have issues with indexing variance. All structure in ITa B is

pointwise inherited from B. We list some examples below for definitions.

*TiaB"Y = ep

(CemaB A) (7, a) i = (Tyrp Aa)
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idoeB Y =idp

(0 omand)y =070 dy
Alolnas {7t = (Aa)lo1]s
KnaeB A« =Kp (Aa)

For the specifying isomorphism (app, lam) : TmT' (Ila B) ~ Tm(I'> Ela) B,
note that the difference in presentation is exactly component-wise currying and
uncurrying. For instance, in ¢t : TmT (Il a B), the underlying action on contexts

has the following type:

(L' : Conr)(y:al) — Cong (L, v)

=

While in t : Tm (' > Ela) B, we have

((L, %) : (L : Conp) x al') — Cong (L, 7)

=

So app and lam are defined as component-wise uncurrying and currying respec-
tively. Naturality of IT and app again follows from the fact that flewf morphisms
strictly preserve all structure, and substitution is component-wise function com-

position.

External product type

For Iz : Ty, and B : Tmg Iz — Ty T, we define TI®* [z B : Ty T as the [z-indexed
product of a family of displayed flewfs.

Conpext p g I = (i: TmgIz) — Cong,; I’
Subpex , p ' Ag := (i : Tmg Iz) — Subp,; (I'i) (Ad) o
Tygee g IA  =(i: Tmolz) = Tyg, (T'i) A
Tmpee , g DAL = (i: Tmg Iz) — Tmpg,; (I'i) (Ad)t

All structure is defined in the evident pointwise way. app®* and lam®* are defined
by component-wise flipping of function arguments. This concludes the definition
of the M model.

Example 16. We look at the computation of a semantic flewf, in the simple case

of the flewf of Nat-algebras. Recall that the signature is

NatSig := et> (N : U) > (zero : EIN) > (suc: N = EIN)
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We evaluate NatSig in M entry-wise. We start from e, the terminal flewf where
algebras are elements of T. Then, moving left to right, we take the total flcwf
of each type in the signature. From U, we get the product of T and the flewf
of sets, which is equivalent to simply the flewf of sets. Second, we extend this
with the semantic EI N, which is the displayed flcwf of points of sets, to get the
flewf of pointed sets. Finally, by extension with N = EIN, we get the flewf of
Nat-algebras.

Let us also look at some components of the resulting flewf. Algebras, displayed
algebras, morphisms and sections have been already discussed before, so we look at
other components. We omit the leading T components everywhere in the following.

e is the terminal Nat-algebra, i.e. ¢« = (T, tt, A _.tt). Context extension — > — :
(" : Con) — TyI' — Con constructs the total algebra of a displayed algebra.

(N, z, 8)> (NP, 2P sP)
((n: N) x NPn), (2, 2P), (A(n, nP). (sn, s”nnP)))
p and q respectively project first and second components from a total algebra. For
t,u:Tm (N, z, s) (NP, 2P, sP), Idt u is the displayed Nat-algebra which expresses
equality of Nat-algebra sections. Let us review the definition of sections:
Tm (N, z, s) (NP, 2P sP) =
(N®:(n:N)— NPn)
x (25 N%z=2P)
x (s :(n:N)—= N°(sn)=s"n(N°n))
We have that
14 (N5, 25, 55) (VF, 25, )

((An. Naqn = len), (- Nosz = le z), (An.(_: N[;S (sn) = le (sn))))

The underscores denote omitted equality proofs; they follow from the z° and s°
components. It should be apparent that TmI' (Idtw) is isomorphic to t = wu;
this follows from function extensionality and decomposition of equalities of pairs.
Thus, equality reflection holds in the flewf of Nat-algebras. Note that we do not
need to use equality reflection for — = — to show this; it is simply a reshuffling of
components along funext.

K: Con — {A: Con} — Ty A yields a non-dependent displayed algebra:

K(N, z, s){N', 2", s} =(A_.N, 2z, A\n_sn)
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With this definition, we indeed have that TmI' (KA) = SubIT" A.
Y:(A:Tyl') - Ty('> A) — TyT is the evident parameterized variant of

—> -

S(NP, 2P sPYy (NP, 2P P =

(An. (nP : NPn) x NP (n, nP)),
D

4.2.6 Recovering AMDS Interpretations

We have defined the M model in a “bundled” fashion, but sometimes we will also
need to refer to pieces of it. In Figure 4.1 we have a summary of the model. On
the left, the rows are labeled with components of ToS, while on the top we have
components of flcwf. The individual rows can be further unfolded, as each of them
contains multiple components. Likewise the ¥, Id and K columns can be unfolded.
We get the whole model by filling every cell of the unfolded table with a definition.
Of course, many of these cells are equations between equations, hence trivial by
UIP.

This setup is very regular and convenient because we can extract a displayed
ToS model from any column, which may depend on columns to the left. The whole
model is the total model of all columns. For example, the Con column does not
depend on anything, so it is a plain model. The Ty column is displayed over Con.
The Tm column depends on Con and Ty, but it does not depend on Sub.

See also Appendix A for a tabular specification of the AMDS interpretations.

From each displayed model, we get an eliminator, i.e. a family of interpretation
functions. We note 4, ~™_ P and 9 in the table, but in principle we could
refer to the eliminators of other columns as well. The interpretation functions can

be defined in two ways:

e By separately taking the eliminators of each column, and referring to pre-
vious eliminators in each displayed model; e.g. referring to the eliminator

functions —4 in the definition of the Ty column.

e By taking the recursor for the entire model, and projecting out components
from the result. E.g. we get —“ by projecting out the first components of

the interpretations of ToS objects.
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cwf fl
Con|Sub| Ty | Tm|...[=]1d]K
cwi
U
Id A M D S
II
HExt

Figure 4.1: The flewf model of the theory of signatures

However, the two versions coincide because of the initiality of ToS syntax.

4.2.7 Left Adjoints of Substitutions

In this section we show that if all signatures have initial algebras, then the semantic
interpretation of each v : Sub 2 A has a left adjoint functor. We have the following

setup.
e We write [-] for the interpretation into the flewf model M.

e We close types in ToS under T and ¥, that is, we have T : Ty[' and X : (A :
TyI') —» Ty (I'mA) — TyI'. The flewf semantics can be immediately extended
with these type formers: since flewfs are given by an FQII signature, they
form an flewf themselves and support T (as Ke) and . In the following we
will need to talk about signatures depending on signatures, and T and ¥ are

more convenient for this purpose than telescopes.

Given v : SubQ A in the ToS syntax, we get [v] : [Q] — [A] as a functor
between [ and [A] categories of algebras. We seek to construct some L : [A] —
[€2] such that L A [v].

The basic idea is the following: the existence of left adjoints is equivalently
characterized by having an initial object in the comma category ¢/[v] for each
§ : A4 [ML98, Section IV]. Thus, it is enough to find some signature ¥ such that
[¥] is equivalent to d/[v], and by assumption we get an initial object. The objects
of §/[v] consist of the following:

(w: QN x (n: AM§ (v1w))
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Of the two components, w : Q“ can be clearly represented as the € signature. The
7 component is a bit more complicated. We need to represent a A-morphism, but
whose domain is an external algebra, and whose codomain is an algebra internal to
the ToS syntax. In other words, we need a notion of “heterogeneous” morphism,
where the domain lives in the usual flewf semantics, but the codomain lives in the

syntactic slice model ToS/€2.

Definition 45 (Heterogeneous morphisms). Fixing € : Con, we define —7M

by induction on the ToS.

~HM (T Con) — T4 — SubQT — Ty Q

MM (g SubT A) = TmQ (DM g 41) = TmQ(ATM (64 ) (o0 1))

M (A TYTD) = A%y = TmQ(A[y]) = TmQ (THY 459,) — Ty Q

S Tm DAY (T Tm Q (Y g 7)) = Tm Q (AT (4 y0) (tn]) )

The interpretation on contexts sums up the difference between the “homogeneous”
~M and the current one. In the homogeneous interpretation, we have I'M : ' —
I'* — Set, in the heterogeneous one the codomain of the relation is syntactic, and

the return type as well. We use T and ¥ in ToS to interpret contexts:

M o :

T
(D> A)"M (70, ag) (i an) =%

(’YHM : FHM Y 71) (AHM o a1 /YHM)

We use a nameful notation for Y-binding on the right hand side. In the cwf
interpretation we similarly reuse ToS type formers in a mechanical way, following
the definitions of the homogeneous — M

U is interpreted using external function types:

yaM . (ap : Tyg)(a; : TmQU) — TmQ(FHM Yoy1) — Ty
UM qo aq ™™ = ag =B Elay

Note that this does not work if aq is syntactic and a; is external, as we have no

HM

function type in ToS with external codomain; so — would not work with an

external second parameter. EI"™ uses the Id type in ToS:

(Ela)™ . a4 4y = TmQ(El (a[11])) — Ty Q

(Ela)"™ oy ay vM .= 1d (o™ v o) oy
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In IT we give the usual pointwise definition, using the external product type:
(Ia B)*™ tot, vTM .= (a : a®yp) =% BEM (t5a) (t1 (™™ 477 q)) (vHM | refl)
In Id, we reuse the Id in ToS:

(Idtu)™M 2o = utyg = Tm Q(Id (t[n]) (u[n])) = TmQ(IHIM g 4y) — Ty Q

(Id t )M o py yTM = |d (M MY (o HM HIY
External products are again external products.
(™ Ux B) Mt 4" = (i 2 Ix) =5 (B i)™ (tg4) (t1d) "™
The newly added T and X type formers are evident:
THEM ttttA™ =T

(S AB)YM (o, Bo) (a1, B1) =

Z(O_/HM . AHM ap 'VM) (BHMBOﬁl (,YHM, OéHM))

Definition 46 (Representing signature). For v : SubQ A and 6 : A, we define

the signature which represents 6/[v]:
Sigspy = Q20 AHM sy
Now, we have that
(Sigs/1p)” = (w: Q%) x (A" 5v)  w)
(Sigsypp)™ (wo, m0) (w1, m) = (@Y : QM wowr) x (AT §0)M g m w™)

It remains to show that [Sigs,p,1] is indeed equivalent to 6/[v]. It suffices to show

that sets of objects and morphisms are isomorphic. We need the following:
A= (ATM 54 ~ AM§ (v w)
M= (AFM s )M pon M ~ (WM oMo A% ny = A% )

These can be shown by induction on ToS again; we omit describing this here.

Theorem 4. If every FQII signature has an initial algebra, then for every v :
SubQ A, there exists a left adjoint of [v] : [Q2] — [A].

Proof. For each § : A%, the comma category 6/[v] can be specified with Sig 1,
by Definition 46, hence it has an initial object. The left adjoint L : [A] — []
sends each ¢ : A4 to the w : Q4 component of the initial algebra of Sig - O
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4.3 Discussion of Semantics

4.3.1 Flcwfs For Free

We give a quick summary for using the semantics of FQII signatures. As input we
pick a) a signature I' b) a cwf C with X, T and extensional Id. Then, we interpret
the signature in M, thereby getting an flewf in 2LTT. Then, we interpret that in
presheaves over C, and we get the flewf whose objects are internal I'-algebras in
C.

One use case is in building models of certain type theories. Usually, this starts
with constructing the base cwf. But if the objects can be specified using an FQII
signature, we get an flewf for free. In some cases, we get exactly what is needed.
For example, the flcwf of presheaves can be used as it is in the presheaf models of
type theories.

In other cases, the flewf that we get has to be extended in some ways. This
often happens if the objects in the model have an internal notion of “equivalence”

which has to be respected by types.

e In the setoid model, objects are setoids and types are displayed setoids with
additional fibrancy structure [ABKT19].

e The groupoid model [HS96] is analogous; again types are displayed groupoids

with fibrancy structure.

e Likewise, in the cubical set model [BCH14|, types are displayed presheaves

together with fibrancy structure (Kan composition).

In all these cases, the semantic objects have FQII signatures. We can interpret
their flwcfs in Set and add fibrancy conditions. The cubical set model is presented
exactly in this way in [BCH14], using displayed algebras. The groupoid model
in [HS96] instead presents types as I' — Gpd functors, i.e. uses an indexed style
instead of the displayed style.

In the indexed-style groupoid model, we get strictly functorial type substitu-
tion, just like in the displayed style. However, the displayed style appears to be
a more general way to get strict substitution, as it works for every FQII theory.
Again, although finitely complete categories can be always strictified to cwfs, if
we ever need to perform calculations with the internal definitions of a model, the

displayed style is much more direct.
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4.3.2 Variations of the Semantics

In Section 4.1, we required that the inner theory has ¥, T and extensional Id,
and then used the assumed type formers in the definition of U. Hence, when we
interpret the semantic flewf of a signature in the presheaf model, we again need to
assume these type formers in the base cwf C.

However, we can drop Id from the requirements on the inner theory, and likewise
drop the identity type from flewfs, and the model still works. In this case we have
a somewhat more general semantics. In particular, like in Section 3.5.2, we can
interpret signatures in finite product categories because T and X can be derived
from finite products in the constructed “simply typed” cwf. On the other hand,
we get less out of the semantics. For instance, we cannot show equivalence of
initiality and induction without Id.

If we want to trim down the assumptions on the inner theory to the minimum,
we can make do with simply an inner cwf with no type formers at all. This implies
that for each signature we can build a category of algebras, plus extra structure
which does not require ¥ or T in the U definition. So we may have displayed
algebras, sections, and also functorial substitution for these, but we do not have
terminal algebras and total algebras.

We could also add more type formers to the semantics. For instance, we may
add an external product IT®* (specified the same way as in signatures). Extending
flewfs with II®* requires II-types in the inner theory of 2LTT, hence in C as well.
The reason is that indexed products of algebras require functions in the underlying

sorts. More concretely, in the definition of U we have to interpret
I5*: (Ir : Tyy) = (Tmg Iz — Tyy ) — Ty T
hence
5 : (Ir : Tyy) = (Tmo Iz — Tmo LD — Ty,) — Tmo ' — Ty,
This works if we can return an inner Il type in the definition:
M5t Ix By :=(i: Ir) = Bivy

In this case, the flewf semantics can be completed. We omit checking the details
here. If we have both extensional Id and IT5<, that yields small limits of algebras.
If we want to have “simply typed” semantics for this configuration, it is enough

to assume a cartesian closed base category C.
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4.3.3 Substitutions

Interpreting signatures is not the only potentially useful thing that we get out of
the semantics. Each o : SubT’ A can be viewed as a free interpretation of the A

theory in I', and we get a strict flewf morphism from the semantics.

Ornaments

One use case of Sub is to specify ornaments [DaglT7], i.e. ways to decorate struc-
tures with additional information, or dually, to erase parts of some structure.
Ornaments differ from the usual forgetful maps because they forget structure in

negative position, i.e. in assumptions of construction rules.

Example 17. We assume A : Ty,. We define the substitution which forgets

elements of A-lists.

o :Sub (e (Nat : U) > (zero : El Nat) > (suc : Nat))
(o> (List : U) > (nil : El List) > (cons : A =5 List — List))

The map goes from numbers to lists because of the “contravariant” forgetfulness.

We define o by listing its component definitions.

List := Nat

nil := zero

cons ;=\ _A\n.sucn

Example 18. We assume Nat, : Ty, with zeroy and sucy, and define o : Sub NatSig FinSig,

where FinSig is as follows:

Fin : Naty -5t U
zero : (n : Naty) —5* El (Fin (sucyn))

suc : (n : Natg) =5 Finn — EI (Fin (sucon))
o is defined as

Fin := \°** _ Nat
zero := Nt _ zero

suc = \“' _An.sucn
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For a specific programming use case, if we have any recursive function defined
on an “erased” type, we can convert that to a recursive function which acts on
an “ornamented” type. For example, if we have some Nat-algebra I', the recursor
yields a morphism from the initial algebra to I'. We can map I to a list-algebra or
a Fin-algebra, and then we can also use recursors for lists or Fin. Equivalently, we
can map the unique morphism to I' directly to a morphism between ornamented
algebras.

Note though that a number of features and concepts from prior work on orna-
ments are not yet reproduced. For example, we do not yet have an analogue of
algebraic ornaments, which would allow us produce an ornamented signature as
an output of a generic operation, instead of assuming it to begin with. Exploring

ornaments with QII signatures could be part of future work.

Model constructions

In a broader context, ToS provides a synthetic language for specifying model con-

structions.

Example 19. For a simple example, we might want to show that constant families
are equivalent to democracy in cwfs. Democracy means that for each I" : Con there

is a T : Tyesuch that I' ~ (e >T) [CCD17, Section 3.1].

We can define a o : Sub cwfK cwfdem

which interprets democracy using constant
families. It is the identity morphism on the cwf parts and interprets democracy as
I := KT. The isomorphism I' ~ (e > KT') follows from the specification of K. We
can also define a morphism o~ : Sub cwfX cwf9™ which interprets KA as Ale]. Tt
is easy to check that o' is indeed the inverse of o. Thus we get an isomorphism
of flewfs of models from the ToS semantics.

This construction is very simple, and would not be difficult to check without
the ToS semantics. But it is generally not obvious that a certain mapping from
models to models extends to an flewf morphism, so it may be helpful to work inside

ToS.

Example 20. There is a simple way to show that if a type theory does not sup-
port 7 for II, then function extensionality is not provable in the theory [BPT17].!

Tt is also possible to show unprovability of function extensionality assuming n for functions,
but in significantly more complicated ways. To the author’s best knowledge, the set-based

polynomial model is the easiest solution [VG15].
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Assume some type theory with X, II, Id and Bool, and abbreviate its signature as
TT. We define a ¢ : SubTT TT which has identity action everywhere except on
II. There, we have

I :=XAB.IIAB x Bool
app := At.app (proj, t)

lam := \t. (lamt, true)

In short, we tag functions with a Bool value. This equips Il with “intensional”
information, contradicting extensionality. If we have two functions which are point-
wise equal, that only specifies that the function parts are equal, but does not say
anything about the Bool tags. Hence, if we take any model of TT, we get a new
model by the semantic action of o, where function extensionality is false. Note
though that the n rule also fails in the new model, so we had to drop 7 from the
TT signature as well.

In [BPT17], this construction is presented for the special case where the starting
model is initial. While it is easy to generalize to arbitrary starting models, it is
less obvious to extend the construction to a functor of categories of models - which

we do get for free here.

Example 21. The gluing construction by Kaposi, Huber and Sattler [KHS19|
takes as input two models of some type theory together with a weak cwf-morphism
between them, and produces as output a displayed model over the first model. De-
pending on the choice of the inputs, the gluing construction can yield parametricity
translations and canonicity proofs as well.

Let us use TT : Tye for the signature of the type theory, given as an iterated
large ¥-type. Then, the notion of weak cwf-morphism is also expressible in ToS
as morph : Ty (e > (My : TT) > (M; : TT)), and the notion of displayed model
as well, as TT? : Ty (e (M : TT)).2 Thus, we can give a “type” for the gluing

construction, as follows:
Tm(e > (My:TT)> (M; : TT) > (f : morph[My — My, My — M)))
(TTP[M — My))
Moreover, the gluing construction itself can be given as an inhabitant of the above

type. This construction works in the ToS because it only reuses structure from
M to define the displayed model over M,.

2We will be also able to automatically derive TT” from TT, in Section 5.4.
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Limitations. In the finitary ToS syntax, when defining substitutions we can
only ever use assumed type constructors. If we assume > and T type formers in
the domain signature of a construction, we might be able to work around the lack
of ¥ and T in U in the ToS itself. This does not always work though; for example,
take the substitution with type Sub MonoidSig CatSig which maps a monoid to a
single-object category. Assuming M : U is the carrier set in MonoidSig, we would

need to have the following:

Obj =T
Hom:=\__ M

But we have Obj : U in CatSig, so we would need to have T : U. In Chapter 5, we

present a more expressive ToS which does include T : U.

4.3.4 Using Signatures in Implementations

We may ask whether the current ToS is suitable for implementations of type the-
ories. The answer is not wholly straightforward.

Note that we must choose a concrete surface syntax in an implementation,
and there are many design choices. The surface syntax would be almost certainly
nameful, and may or may not leave El-s implicit, since they are not difficult to
insert by bidirectional elaboration. Besides the elaboration of surface syntax, we
should have at least the computation of induction principles.

Equality reflection in the ToS is a complication. If we have “silent” transports
along equality reflection, that makes elaboration of surface signatures undecidable.
We might make transports explicit, which restores decidable checking, but that
requires the ToS to be deeply embedded in some ambient theory.?

Alternatively, we may just drop equality reflection from the ToS, and use trans-
port and UIP as primitives. This recovers decidable surface syntax, but now we
have to cover transport and UIP in the semantics, to be able to compute induction
principles. This is not too difficult; in Chapter 6 we do the same for path induction
J in the ToS. In that case, we even have a Haskell implementation of signature
elaboration and computation of induction principles [Kov20)].

Hence, handling signatures and computing induction principles is not difficult.

Instead, the real gap between our ToS and practical implementations is that we

3Equality reflection is simply an equality constructor in the embedded syntax, and has no

bearing on decidability of type checking in the metalanguage.
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need to have computationally adequate treatment of quotients. In plain Martin-
Lof type theories, computation gets stuck on quotients. We need to use more
recent systems, such as a cubical type theories [VMA21,SAG20], or some flavor of
observational [AMS07] or setoid [ABKT19] type theory. In each of these systems,
the signatures and their semantics would need to be adapted, and we would need
to work out additional details. For example, we would need to produce extra
computation rules which explain the behavior of coercion or transport on QIIT

constructors.

4.4 Term Algebras

In this section we proceed with the construction of term algebras for FQII sig-
natures, together with their recursors and eliminators. We make two significant

modifications to the setup.

First, we drop the outer theory, and work exclusively inside an exten-
sional type theory. The reason is the following. The main purpose of 2LTT is to
generalize the semantics of signatures. In the previous section, we presented se-
mantics for signatures, where algebras are internal to arbitrary cwfs with >, T and
extensional Id. This is quite general; in particular we can interpret signatures in
any finitely complete category. We also described dropping assumptions in Section
4.3.2, thereby getting semantics in yet more general settings.

In contrast, we make a lot more assumptions in the inner theory when we
develop initial term algebras; we essentially have to replicate the outer features
verbatim. Thus, we gain nothing by using 2LTT, compared to working in a model
of an extensional T'T.

What about the term model construction for simple signatures in Section 3.5.6,
why did we use 2LTT there? In that case, the inner theory was intensional, i.e.
lacked equality reflection. So there remained an interesting distinction between the
inner and outer layer, which allowed us to prove definitional S-rules for recursors.
In contrast, here we assume inner equality reflection, so we have no distinction

between propositional and definitional inner equality.

Second, we make universe levels explicit in the semantics and construc-

tions. So far, we have been consistently ignoring universe levels. Now, size ques-
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i< I, z:AFB<B
Fl—Seti§Setj FF(%A)%BS(Q?A)%B/

T'~A<A T,2:AFB<B

'F(z:A)xB<(z:A)xB rFA<A
''A<B r-B<C A< A F'Ft: A
r-A<C FHt: A

Figure 4.2: Rules for cumulative subtyping

tions are less obvious, and quite relevant to a) ensuring the consistency of as-
sumed induction principles b) laying groundwork for bootstrapped semantics and
self-describing signatures in Section 4.5.

Universe levels are a fairly bureaucratic detail in type theories. In the following
we try to be as informal as possible, while still representing the essential sizing
aspects. In the following, we describe the new universe setup, and adapt the

previously described signatures and semantics to it.

4.4.1 TUniverses & Metatheory

We have N-indexed Russell-style Set; universes, which are cumulative, meaning
that any type in Set; is also an element of Set;,;. We use a surface syntax which
is similar to Coq, where cumulativity is implicit. This contrasts the formal (“alge-
braic”) specification of cumulativity [Stel9, Kov22a], which involves rather heavy
explicit annotation.

Also following Coq, we have implicit cumulative subtyping [TS18]. In our case,
this means that cumulativity distributes through basic type formers. We have a
— < — subtyping relation on types, specified in Figure 4.2. This is subtyping for
surface syntax; it is expected that surface syntax can be elaborated to coercions
in a formal syntax with algebraic cumulativity.

Note that we have an invariant rule for function domain types. This is to
match Coq and [T'S18], and also because we will not need a contravariant rule in
any case.

We assume that Il and ¥ types return in least upper bounds of levels. For
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instance, assuming A : Set; and B : A — Set;, we have (z: A) — B : Set; ;.

4.4.2 Signatures & Semantics

First, we parameterize the notion of ToS-model with levels.

Definition 47. For levels 7 and j, ToS; ; : Set;11, 41 is the type of ToS models,
defined as before, but where Con, Sub, Ty and Tm all return in Set;, and I

abstracts over Set;.

We have that ToS; ; < ToS;;1 ;. This follows from the rules in Figure 4.2. All
underlying sets return in Set;, which can be bumped to Set;,;. Th j level does
not change, which is as expected, since Set; appears in a negative position in the
type of II®*, and has to be invariant.

Assumption. We assume that for all j, there exists syn; : ToS;,;; which
supports induction. Note the level bump in the first index; this is to avoid incon-

sistency from type-in-type:

Ty :Con — Set;4
5 : (A Setj) = (A — Tyl) = TyT

With Ty returning in Set;, II®® would “contain” a Set;, but at the same time
return in a type in Set;, and by induction we would be able to derive a Russell-like
paradox. Likewise, all other underlying sets must be bumped to Set; ; because of
their mutual nature: contexts, terms and substitutions all “contain” types through

some of their constructors.

Definition 48 (Signatures). We define Sig; : Set;,; as the type of signatures

where IT®* may abstract over Set;, so we have Sig; := Congyp, -

Definition 49 (Flwcf model). For levels ¢ and j, we have M, ; : ToS(i+1uj)+1,5
as the model where contexts are flewfs, and objects in the flewf are algebras. The
model is defined in essentially the same way as in Section 4.2. The algebras have
underlying sets in Set; and (semantic) external products are indexed over types in

Set;. Hence, every algebra in M, ; is in Set;q;.

Example 22. We may define NatSig as an element of Sig,. Then, by interpreting
the signature in M, o, we get NatSig? = (N : Set;) x (N — N) x N, hence
NatSig” : Set; 1 1u0-
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Notation 18. For a signature I' : Sig; and level i, we may write I'4 for the type
of I'-algebras with underlying sets in Set;, which is computed by interpreting I in

M, ;. We may use similar notation for -, —P and —%.

Cumulativity of algebras. In the following, we shall assume that for I' : Sig;
and i < i, we have I'/4 < I'4l. For any concrete signature I, this is clearly the
case, but — < — is not subject to propositional reasoning, so we cannot prove this
by internal induction on signatures. We can prove by induction on signatures that
there exists a lifting, a LiftT'{* : Set;1,,; which is isomorphic to I'/'. Instead, we
take liberties, and work as if we had actual cumulative subtyping. This seems
acceptable, since by using implicit cumulativity, we are already taking the same

liberty everywhere, by omitting formal lifts and isomorphisms.

4.4.3 Term Algebra Construction

We fix (2 : Sig; for some j level. We define ~T by induction on syn;. In the
following we write —4 for 73.4“, i.e. the algebra interpretation where underlying
sets are in Set; ;. Formally, we need a displayed model over syn;, but we instead
present the resulting eliminator, which is perhaps easier to read. The underlying

functions have the following types.

v:SubQrI) — T4

v:SubQI) = AT (6 ov) =0 (I'T)
v:SubQT) = TmQ(A[v]) — A* (T v)
S(t:TmT A) (v:SubQT) — AT v (t[v]) = t* (I v)

We review the idea of term algebras. In any model of ToS, we might think of
a Subel as a I'-algebra internal to the model. In the —7 interpretation we can
assume () = eo; this means that from any internal I'-algebra we can extract an
“external” I'-algebra. This is possible because every sort a : TmI' U in ToS induces
an external type of terms as TmI' (Ela).

We can view the generalization from e to arbitrary 2 as switching from working
in the syntactic model syn;, to working in the slice model syn;/Q, where contexts
are given as () extended with zero or more entries. And in syn,/Q, we have an

(-algebra quite trivially, by taking the identity morphism id : SubQQ.# Hence,

AWriting —¥"/? for the interpretation of syntax in the slice model, Subsynj/Q . (st“a‘/ﬂ) is

isomorphic to, but not strictly the same as Subsyn]_ QQ.
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term algebras arise by first taking the trivial internal algebra id in syn;/€, then
converting it to an external algebra as Q7id : Q4.
Remark. We could have presented —7 and slice models separately. We instead

chose to merge them into the current —7

, since we do not use slice models else-
where, and we can skip their definition this way. Slice models would require the
specification of telescopes, used to extend the base context, but this entails a fair
amount of bureaucratic detail.

We explain the —7 specification in the following. Term and substitution equa-
tions are given by UIP. We omit cases for substitutions and terms.

For contexts, we simply recurse on the entries. We use a pattern matching
notation for Sub ) (I' > A), since any v with this type is uniquely determined by
its first and second projections p o v and q[v].

R = tt

> AT (v, t) =Ty, ATvi)
Type substitution with o : SubI" A is as follows. This is well-typed by o v :
AT (cov) =04 (TTv).

(Ale) vt := AT (cov)t

Universe

For the universe, note that UJA+1 v = Set;y1. As we mentioned before, this is the
key part when we map from internal sorts to external sets. The levels line up,

since in syn; we have Tm returning in Set; ;.
UT: (v :SubQTl) — TmQU — Set;
U'va:=TmQ(Ela)
For El, we have to define
(Ela)” : (v:SubQT) — TmQ (El (a[v])) — a* (I v)
but since a” v : TmQ (El (a[v])) = a” (I'T v), we have
(Ela)" : (v:SubQT) — TmQ (El (a[v])) — TmQ (El (a[v]))
(Ela)" vt :=t

The a’ v equation is worth noting. If we have v = id, the equation is a” id :
TmQ (Ela) = a® (QTid), that is, if we evaluate a signature sort in the term model

O7id, we get a type of inner terms.
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Identity

We have to show that provably equal terms are evaluated to the same value in the

term model.
(Idtw)” : (v:SubQT) — TmQ(Id (¢t[v]) (u[v])) — t* (IT v) = u? (T )
We know by equality reflection that t[v] = u[v], and we also get

thy - AT v (tv]) =t* (T7v)

uv: AT v (uy]) = u (ITv)

from which the target equality follows. Equality reflection for inner Id is crucial
here. It is the reason why —7 works for quotient signatures; equality reflection
is in fact the “quotient” rule which identifies provably equal terms. For a simple

example, terms with type
Tm (e (I :U)> (left : EIT) > (right : EIT) > (seg : 1dlr)) (EIT)

are quotiented by seg, which is a provable equation in the context.

Internal product type
Here we have to convert an inner term with II type to an outer function.
(IMaB)" : (v:SubQT) — TmQ (I (a[v]) (Blv o p, q]))

— (a:a*(ITv)) = BA(ITv, a)
(MaB)Tvt:=Xa. BT (v, a) (ta)
This is well-typed by a” v : TmQ (El (a[v])) = o (I'T v), which allows us to con-

sider « to be an inner term in Aa. BT (v, a) (t a).

External product type
In this case we just recurse through the specifying isomorphism:
(M®*AB)T : (v:SubQT) = TmQ (I®* A (Aa. (Ba)[v)]))
— (a: A) = (Ba)* (T )
(M AB)Y vt = a. (Ba)! (v, a)

This concludes the definition of —7T.
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Definition 50. For an € : Consynj signature, the corresponding term algebra is
given as Q7id : Q7 .

Remark. If we start with a signature in syn;, then the underlying sets in the
term algebra are all in Set; ;. Hence, the term algebra for NatSig : Sig, has an
underlying set in Set;. This is perhaps inconvenient, since normally we would have
natural numbers in Sety. However, we argue that this is no issue because we are free
to specify Setq as we like. In particular, we can say that Setq is an empty universe,
closed under no type formers at all (or explicitly isomorphic to L) in which case
Sig, stands for closed signatures (since IT®* cannot be constructed), and it is
expected that any closed inductive type would be placed in Set;. Alternatively,
we could name the bottom-most universe Sete;, or Set_;, and start counting

non-empty universes from Set.

4.4.4 Recursor Construction

We continue with the construction of recursors. This is not necessary, strictly
speaking, since recursion is derivable from elimination, so it would suffice to only
construct eliminators. We still present recursors, for the sake of matching the
presentation in Chapter 2.

The goal is to construct a morphism from a term algebra to any other w : Q4
algebra. However, we have to handle universe levels as well. We want to be able to
eliminate from the term algebra, which was constructed at the lowest possible level,
to any other universe. So far we have not introduced a “heterogeneous” notion of

morphism, between algebras at different levels. We get this from cumulativity.
e We assume (2 : Sig;, for which we already have the term algebra OTid : QJAH.
e We assume some k > j + 1, and an w : 1, the target of recursion.

e We implicitly lift Q7id from level j + 1 to level k& by cumulativity, and

construct a “homogeneous” morphism from the lifted term algebra to w.

This allows us to eliminate from Q7 id to any level. If we want to eliminate to
k > j 4 1, we can lift the term algebra, and use a constructed recursor. On the
other hand, if we want to eliminate to k < 7 4+ 1, we can instead lift the target

w : ) algebra to j + 1, and again use a constructed recursor.
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In general, for any w : ' and ' : 7, the notion of heterogeneous morphism
between them arises by lifting both algebras to ¢ U j, and taking homogeneous

morphisms between these.

Example 23. The NatSig : Sig, signature gives rise to NatSig” id : NatSigf. This
consists of Nat : Set; together with zero and suc. Assuming a recursion principle
as described above, and Bool : Sety, we may define an isZero : Nat — Bool function
by “downwards” elimination. We have that (Bool, true, A _.false) : NatSig;', so
by cumulativity we also have (Bool, true, \ _.false) : NatSigf, hence by recursion
we get the desired morphism from NatSig” id to this model, which contains the
Nat — Bool function. We can also eliminate “upwards” by lifting NatSig” id to
any NatSigg4 for ¢ > 1.

We define —# by induction on syn;. From this, we will obtain the recursor as
Qfid.
( (v:SubQTD) — TM (v (QTid)) (v w)
(0 :SubT' A)(v:SubQT) — Al (g ov) =™ (T')
R(ATYyTD) (v:SubQD)(t: TmQ(A[Y])) — AM (¢4 (QTid)) (4 w) (T )
B TmTA) (v:SubQTl) — A% v (t[v]) = M (THv)

Let us refresh some details about the involved operations. The reader may also

refer to Appendix A for definitions of the AMDS interpretations.

o For v : SubQT, we get v4 : Q4 — T'4. In the semantics, v is a functor,
and v4 is its action on objects. Analogously, for a term ¢ : TmQ A, we have

t4: (v Q1) — A%y, also an action on objects.

e I'M is the set of I-morphisms. A : TyI is a displayed flewf in the semantics.
AM vields sets of displayed morphisms, corresponding to the semantic Sub

component. So we have

AM A Ny — A%y = TM 454, — Sety,

o tM™ and oM yield actions on morphisms. For ¢t : TmI' A and o : SubT' A, we

have

M (M T ) = AM (2 0) () M
oM (M T g yr) = AM (0% ) (0% 1)
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Again, we follow the “sliced” pattern that we have seen in the term model
construction. Another way to view this, is that getting term algebras or recursors
by direct induction on signatures is futile, since in the construction we have to
refer to the whole Q) signature, but when we recurse inside 2 we necessarily get
smaller signatures.

Hence, the sliced induction can be viewed as induction on arbitrary I" signatures
which are smaller than €2, in the sense that there is a SubQI'. Of course, SubQ T’
includes “being smaller”, but it is more general.

We look at the interpretation of type formers. Again, term and substitution
equations are given by UIP, and we omit term and substitution formers. For

contexts, we again simply recurse:

Ly = tt
(> A (v, t) .= (I v, ARvt)

Type substitution with o : SubT' A also follows the same pattern. The following
is well-typed by o®v : AR (0 ov) =™ (I'Ev).

(Alo])Pvt .= AR (o)t

Universe
We need to define
UR: (v :SubQT)(a: TmQU) — UM (¢ (Q7id)) (e w) (TFv)

Morphisms in the semantics of U are simply functions. Moreover, we have a id :

TmQ (Ela) = a® (QTid).

UR: (v:SubQT)(a: TmQU) = TmQ (Ela) — o w

Ultvat =t w

Thus, we evaluate ¢ in the w algebra, the same way as we did in Chapter 2.

For El, we need to show
(Ela): (v:SubQT)(¢t: TmT (El(a[t]))) — a™ (I'Fv) (t* (QTid)) =t w

We have a®v : URv (a[v]) = a™ (TR v). Hence, URv (alv])t = o™ (I'Rv) ¢, and
by computing U we have t*w = a™ (I'fv)t. The target equation then follows
by tTid : t4 (QTid) = ¢t.
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Identity
We need to show:
(Idtu)®: (v:SubQT)(e: TmT (Id (t[v]) (u]))) — t" (') = ™ (TFv)
This follows from equality reflection on e, together with
thy ARy (t]) = tM (D)
uPv: ARy (u[v]) = ™ (T D)
Internal product type

We get the following target type after unfolding (ITa B)*:

(IMa B)®: (v:SubQI)(t: TmQ (I (alv]) (Blv o p, q])))
— (a:a® (@ (QTid)) — BM (t* (QTid) o) (t*w (™ (TR V) )) (T v, refl)

We have

vlid : Ty = v (Q7id)
a’v :a® (T7id) = TmQ(El (a[v]))

Hence, a” (v (QTid)) = TmQ(El(alv])). We also have av : (Aa.atw) =
aM (TRv), therefore a?w = o™ (I'fv). With this in mind, the goal type can

be rewritten as

(MMaB)®: (v:SubQT)(t: TmQ(II (alv]) (B[vop, q])))
— (a: TmQ(El(a[v])) = B 1 (QTid) o) (t* w (o w)) (T v, refl)

We have the following typing now:
B (v, a) (ta) : BM ((ta)? (QTid)) ((ta)? w) (T v, refl)
By the action of — on internal application, we have
BE (v, a) (ta): BY (t* (QTid) (a? (Q7id))) (t* w (o w)) (T v, refl)

But since a”'id : a? (QTid) = «, this is exactly the target type. Therefore the
definition is:
(MMaB)vt:=Xa. B (v, a) (ta)
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External product type

We again simply recurse through the indexing:

(MMP*AB)R: (v:SubQD)(t: TmQIIP* A (Na. (Ba)[V])))
— (a:A) = (Ba)” t* (QTid) a) (t*wa) (TFv)
(MMP*AB)Rvt:=Aa. (Ba)v(ta)

This concludes the definition of —%.

Definition 51 (Recursors). Assuming 2 : Sig;, a k level such that & > j + 1

and w : Q2 we have Qfid : QM (QT id) w as the recursor for the term algebra.

4.4.5 Eliminator Construction

We assume €2 : Sig; and wP QP (QTid), where k > j + 1. Again we implicitly lift
the term algebra from level j + 1 to k. Here, w?” is a displayed algebra over the
term algebra. We seek to construct an inhabitant of Q% (Q7id) w?. We define —%
by induction.

Constructing eliminators is on the whole quite similar to the recursor construc-

tion. The switch from morphisms to sections is mechanical. We shall only look at
U, El and IT here.

( (v:SubQI) — T (v (QTid)) (VP wP)
(0 :SubT A)(v: SubQT) — AP (g ov) =0° (T'Fv)
F(ATyD) (v SubQD)(t: TmQ(A[Y])) — A% (4 (QTid)) (P wP) (TF v)
S(t:TmLA) (v:SubQT) — AF v (t[v]) =5 (I'Fv)

For the universe, we have the following.
UP: (v:SubQT)(a: TmQU) — (a:a® (Q7id)) = a”wPa
By a”id : ¢ (Q7id) = TmQ (Ela), we can give the following definition:

UZ: (v :SubQT)(a: TmQU) = (a: TmQ(Ela)) — a” w” a

Ufvaa:=aoPwP
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In other words, we evaluate o in the w? displayed algebra. Let us check that this

is well-typed:
o H{w: QWP QP w) = aP WP (0t w)
o WP aP WP (o (Q7id)

alid :a?(Q7id) =«

Thus o w” : a” wP a. Recall that a” can be viewed as the logical predicate

interpretation of o, which expresses that o preserves — predicates.
For El, we need to show

(Ela)® : (v:SubQT)(t: TmT (El(alv]))) — o (TFv) (t* (QTid)) = tP WP

This follows from t7id : t4 (QTid) =t and o v : (M t.tP wP) = a® (T v).

The internal product interpretation is defined similarly as before:

(Ma B)® : (v:SubQT)(t: TmQ (I (alv]) (Blrop, q)))
— (a: TmQ(El(a[v])) = B (t* (Q7id) a) (t° WP (aP wP)) (T'F v, refl)
(MaB)?vt:= X a. BY (v, a) (ta)

We make use of v7id, v” id, a® v and a’ v to type-check the definition.
Interpretations for contexts and other type formers are also essentially the same

as with recursors.

Definition 52 (Eliminators). Assuming €2 : Sig;, a k level such that & > j + 1

and w? : QP (QTid), we have QFid : Q% (QTid) w? as the eliminator.
Theorem 5. Q7id is initial when lifted to any k > j + 1 level.

Proof. QT'id : Q2! supports elimination by Definition 52, and elimination is equiv-

alent to initiality by Theorem 1. ]

4.5 Levitation and Bootstrapping for Closed Sig-

natures

When we previously introduced the ToS, we only specified the notion of model,

and simply assumed that there is an evident notion of model morphism and also a
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notion of induction. For the theory of closed signatures, we can do better because
ToS is itself a closed FQII theory. This is levitation [CDMM10], i.e. the situation
where a ToS contains a signature for itself. Levitation is useful for bootstrapping:
it shall be sufficient to specify only the notion of model for ToS, and notions
of ToS-morphisms, initiality and induction can be computed from that. This

bootstrapping process eliminates the need for either

e Assuming that the syntax of ToS already exists as a QIIT. Here, the assumed
syntax is necessarily ad-hoc, since we are still in the process of building

metatheory for QII theories.

e Bootstrapping the ToS syntax as “raw” syntax, using simple inductive types,
typing/conversion relations and quotients. This is very tedious and should
be avoided if possible. See Section 4.6 for a discussion of this approach,

although used for slightly different purposes.

In this section we describe levitation for closed signatures. The theory of closed
signatures does not have II5¢, but is otherwise the same as before. As we have
seen, the inclusion of II®* yields a ToS which is itself infinitary, which breaks
levitation. Moving to a theory of infinitary signatures will restore levitation; we

revisit this is Section 5.7.

4.5.1 Models & Signatures

Since we do not have IT®, we only need a single universe level for indexing models.

Definition 53. For some ¢ level, we have ToS; : Set;,; as the type of models of

ToS, where all underlying sets return in Set;.

Definition 54 (Flcwf model). For i, we have M; : ToS;,» as the model where
contexts are flewfs of algebras, and algebras have underlying sets in Set;. To see
how @ + 2 checks out: if algebras contain Set;-s, the category of algebras has a

Set; 1 for a set of objects, and M; itself includes a category of these categories.

So far, this can be defined while only using the notion of model for ToS. What
about signatures though? Previously we had that signatures are contexts in ToS
syntazx, and to talk about syntax, we need to know at least the notion of ToS model
morphism.

Actually, if we only want to be able to write down signatures and interpret them

in the semantics, we do not need a ToS syntax. A functional encoding suffices.
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Definition 55. A bootstrap signature is a function which for every ToS model

yields a context in that model. The type of bootstrap signatures is:
BootSig := (i : Level) — (M : ToS;) — Conyy

Note that this is a universe-polymorphic type. This is not an issue; universe
polymorphism is a sensible feature in type theories, or alternatively we may assume
that quantification over levels takes place in some outer theory.

We do not get induction on bootstrap signatures, nor do we automatically get

any naturality or parametricity property.

Example 24. For NatSig, we define the expected signature, but we specify it in

an arbitrary M model instead of the syntax.

NatSig : BootSig
NatSig := A\(i : Level)(M : ToS;).
(ensr Bar (IV 2 Upp) Dag (zero : Elpyy N) oy (suc : N = Elpy N))

We might as well use the same notations for signatures as in Section 4.1, as
every signature from before can be unambiguously rewritten as a bootstrap signa-
ture.

With this, we can interpret each signature in an arbitrary ToS model, by ap-
plying a signature to a model. BootSig; can be viewed as a precursor to a Bohm-
Berarducci encoding [BB85] for the theory of signatures, but we only need contexts
encoded in this way, and not other ToS components. In functional programming,
this style of encoding is sometimes called “finally tagless” [CKSO07].

If we only want to build the 2LTT-based semantics of signatures, we are done
with bootstrapping right now. In the 2LTT semantics, we never needed induction
on ToS, we only needed to be able to write down signatures and interpret them
in models - which we can do. Going forward, we only need to assume an inner
(Tyy, Tmg) layer with appropriate type formers, and define the flewf model the
same way as before.

On the other hand, if we want to consider term models, we do need a notion

of induction on ToS.

Definition 56 (Signature for ToS). We define ToSSig : BootSig as the bootstrap
signature for the theory of signatures. We present an excerpt from ToSSig below

using internal notation; it should be clear that every component can be reproduced.
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We use SigU and SigEl to disambiguate components inside the signature from ToS

components.
Con :U
Sub : Con — Con — U
Ty :Con— U

Tm :(I':Con) - TyI' > U

SigU : {T": Con} — EI(TyT)
SigEl : {T": Con} — TmI'SigU — EI(TyI)
II :{T':Con}(a:TmI) — Ty (I'> SigEla) — EI(Ty )

For each 7, the interpretation of ToSSig in M; yields an flewf I'" such that
Conr = ToS;, that is, objects are models of ToS at level . This yields a model
theory for ToS, which includes the notion of induction at level 4.

We also know by the definition of ToS; that we have cumulativity, i.e. ToS; <

ToS;,1.° Hence, we can make the following definition:

Definition 57. M : ToS, supports elimination into any universe if it supports

elimination when lifted by cumulativity to any ToS;.

This notion of (large) elimination is sufficient for the term algebra and elimina-
tor constructions in Section 4.4. Thus, we were able to derive all required concepts

just from the notion of model of ToS.

4.6 Reductions to Basic Type Formers

From the construction of term algebras and eliminators, we get a reduction of all

QIITs to a single infinitary QIIT, namely the syntax of ToS. We spell this out:

Theorem 6. If an extensional type theory supports syntax for ToS;i1 ;, it supports

initial algebras for each signature in Sig;.

5For concrete bootstrap signatures we may conclude cumulativity of algebras, but we cannot
conclude this universally for all bootstrap signatures, since we cannot do induction on them, and

we do not even assume that they are parametric in levels.
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Ideally, we would like to reduce QIITSs to some collection of basic type formers.
The ToS syntax is far from being a basic type former, it is rather large and com-
plicated. Therefore, the remaining job is to construct the ToS syntax from simpler
types.

We do not attempt here to construct the entire ToS syntax as specified. Lums-
daine and Shulman [LS, Section 9] showed that infinitary QIITs are not con-
structible from inductive types and simple quotienting with relations. Recently,
Fiore, Pitts and Steenkamp showed that a class of infinitary quotient inductive
types, called QWI-types, can be reduced to inductive types, quotients and the
axiom of weakly initial sets of covers (WISC) [FPS21]. The setting additionally
assumes extensional equality and propositional extensionality for an impredicative
universe of propositions. The infinitary ToS syntax is not immediately a QWI-type
because it is inductive-inductive. Nevertheless, it is a reasonable conjecture that
infinitary QIITs are also constructible from the WISC principle. We leave this to
future work.

In this section we show constructions of certain fragments of the full ToS syn-
tax. We first give a general description of QII'T constructions, then describe two
specific constructions, for a) finitary inductive-inductive signatures b) closed QII

signatures.

4.6.1 Finitary QIIT Constructions

The general recipe of constructing finitary QIITs from basic type formers is the
following. This is more or less adapted from Streicher [Str93] and Brunerie et
al. [Brul9].

1. We define the raw syntax, using at most inductive families, but no induction-
induction. These definitions include all value constructors of the goal QIIT,
but there is no indexing involved, constructors only store the raw inductive

data. For example, the raw syntax of closed ToS would include the following:

Con : Set . : Con
Sub : Set —>—:Con — Ty — Ty
Ty : Set id :Con — Sub

Tm : Set —o—: Con = Con — Con — Sub — Sub — Sub
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This can be given by a simple mutual inductive definition, which can be
represented as an indexed inductive family. Indexed families can be reduced
to indexed W-types [KvR20], which can be reduced in turn to W-types and
the identity type.

2. We define typing and conversion relations on the raw syntax. For dependent
type theories, the two are usually mutual: typing includes the rule which
coerces terms along type conversion, and conversion is usually defined only
on well-typed terms. However, it is still possible to define everything using

only indexed inductive families.

3. The underlying sets are given as follows: we take raw syntactic objects which
are merely well-formed (i.e. proofs of well-formedness are propositionally
truncated, or defined in a universe of irrelevant propositions to begin with),

and quotient them by conversion.

4. We show that these underlying sets support all constructors of the target
QIIT: value constructors are defined using raw constructors, while equality

constructors follow from conversion rules and quotienting.

5. We construct a unique morphism from the above term model to an arbitrary
model of the QII theory. This usually requires several steps. One approach is
to first define by induction on raw syntax a family of partial functions into the
assumed model, then separately show that these functions are total on well-
typed input. The separation is necessary because the induction principle
for the raw syntax is too weak: it cannot express the inductive-inductive
indexing dependencies which would be required to construct the morphism
in one go. For instance, if we have the QIIT syntax for ToS, and we have some

displayed model A over the syntax, the eliminator contains the following:

Con® : (I": Con) — Cony T
Sub® : (' A : Con)(o : SubT'A) — Sub4 (Con®T) (Con® A) &

But with the raw syntax, we can only eliminate using a displayed model of

the raw syntax, and the eliminator contains the following:

Con® : (I': Con) — Cony T
Sub® : (0 : Sub) — Sub, o
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Lastly, we show that the constructed morphism is unique. This is done by

induction on raw syntax, and is generally possible in just one elimination.

Note that the above recipe permits a large number of design variations. Some

examples:

e We may omit fields from raw syntax which are fully determined by type
indices. This may make subsequent work easier or harder depending on

particulars.

e We may start from a well-scoped raw syntax, if there is a notion of scoping
in the goal QIIT. In general, we may start from some kind of partially raw
syntax, which is well-typed to some extent. This extent is bounded by what is

expressible only using indexed inductive families but not induction-induction.

e We may move along a spectrum of “paranoia” in the specification of well-
typing [Win20, Section 9.2]. A paranoid typing rule assumes the well-
formedness of everything involved, for example assumes the well-formedness
of a context I' before it assumes well-formedness of a type in I'. In contrast,
an ‘“economic” specification tries to make the minimum necessary assump-
tions, relying on admissibility properties. It is possible that well-formedness
of I' is derivable from the well-formedness of a type in I', so the assumption

can be dropped.

However, if we omit too much, then some other admissibility properties may
break! Design decisions along the paranoia spectrum are often all tangled up
like this; hence the name “paranoid”, which probably stems from the anxiety

of breaking things by making too many shortcuts.

e Instead of using partial maps from raw syntax to the the assumed model
in step 5, we may define relations between well-formed raw syntax and the
given model, and later show that these relations are functional. This seems
to be a technically easier approach. The reason is that we do not have decid-
able definedness of the partial maps, which makes them more complicated.
A decidably defined partial function has type A — Maybe B. For any a : A
we can look at whether the function is defined on it. A more general par-
tial function has type A — ((P : Prop) x (P — B)). If we forget about
the Prop-ness of P for the time being, we can equivalently have a relation

A — B — Set instead. This is a more “indexed” definition compared to
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the “fibered” presentation with P : Prop, and indexed presentations in type
theory usually enjoy more definitional computation rules - this is also the rea-
son why displayed algebras are better-behaved computationally than fibered

algebras.

It should be apparent that constructing QIITs is tedious, and especially so for
large QIITs like type theories. Hence, it is best if we do it just once, for a theory

of signatures from which every other QII'T can be constructed.

Connection to the initiality conjecture

The initiality conjecture was made by Voevodsky [Voel7], and it is essentially the
conjecture that the above construction (“initiality construction”) can be carried
out in sufficient formal detail for “usual” type theories.

There has been much debate about the merits of initiality constructions. See
[Conl19] for a hub of such discussions. On one hand, some people believed that
the initiality construction is essential for reconciling the usage of raw syntax and
categorical notions of models. On the other hand, some people dismissed the
initiality construction as a pointless exercise, considering the categorical syntax to
be the actual syntax, and raw syntax as merely notation for that. The author of
this thesis is of a somewhat different opinion than either of the above.

First, as a moral justification for the usage of raw syntax, the initiality con-
struction is indeed mostly pointless. That is because elaboration comprises the
true justification for that. Elaboration is the effective algorithm which converts
raw syntax to “core syntax”, i.e. typed categorical syntax. Given a piece of raw
syntax, even if we have done the initiality construction, we have no effective way
of learning which core syntactic object it corresponds to! The elaboration litera-
ture is mainly about practical justifications for using certain raw syntaxes, and it
comes with established ways to talk about strength and correctness of elaboration
algorithms.

Second, there is a different motivation for the initiality construction: founda-
tional minimalism, the reduction of a complicated QIIT to basic type formers.
Elaboration merely assumes that a categorical core syntax already exists, as the
target of elaboration, but it is orthogonal to the construction of the core syntax.
If we have elaboration, we may still want to show a reduction of the core syntax,
but now we are free to perform this construction in whatever way is the easiest.

We do not have to construct the QII'T out of a raw syntax which is intentionally
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close to the raw syntax that we use in practice! In the author’s opinion, a great
deal of confusion arises from the conflation of the two different motivations for the
initiality construction.

As to which way of construction is easiest: the author does not know of any
truly easy way, but this thesis shows that we only have to do it once, for a theory
of signatures, and then we can construct all other QIITs from that in a generic
way. In particular, almost all type theories in the wild are finitary closed QII
theories (with the notable exceptions of our ToS-es), so if we can construct closed
signatures, we can construct initial models of almost all type theories.

What about generic ways to formalize elaboration algorithms? This seems to
be a lot more difficult. To the author’s knowledge there has not been notable
research in this area. Decidability of conversion is already very hard to analyze
in a generic way, and the simplest possible bidirectional elaboration algorithms
rely on decidable conversion. To formalize practically realistic elaboration (i.e.

elaboration which includes unification) is yet more difficult.

4.6.2 Reduction of Finitary Inductive-Inductive Types

This section is based on the author’s joint work with Kaposi and Lafont [KKL19].
The core idea is the following: a certain fragment of ToS can be constructed in a
far simpler way than what we described in Section 4.6.1, with fewer assumptions
in the ambient theory. We call this fragment the theory of finitary inductive-
inductive signatures. This theory has the following type formers (on the top of
the base cwf):

e The U universe with El.
e Inductive function type II, but without lam, and thus without fn-rules.
e External function type II5<, but again without lam®<.
This ToS is tuned so that
1. No quotients are required in its construction.

2. The generic term model construction still goes through for every signature
in the ToS.
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We explain in the following. First, the equational theory of ToS only specifies
substitution, but it contains no computation rules for type formers. Thus, ToS is
a theory of neutral terms and substitutions. This allows us to define a raw syntax
which only includes normal forms, and to define substitution as recursive functions
acting on normal forms. This trivializes the conversion relation: conversion is
simply propositional equality of raw terms. Thus, there is no need to quotient by
conversion. Note that our raw syntax is infinitary because we have to represent the
branching in IT¥. This is fine though: we only run into the issue of the missing
choice principle (presumably, the WISC principle) if we try to mix quotients and
infinite branching. Without quotients, infinite branching is not an issue.

Second, we do not include an identity type in ToS. This blocks the other way
for quotients to enter the picture. With identity types, the generic term model
construction relies on equality reflection in ToS. But when we construct ToS syntax,
the only way to show equality reflection is to quotient raw syntax by internally
provable equalities.

Third, it remains to check that the generic term model construction works
with the pared-down ToS. We only need to check that the omission of lam and
lamB* does not mess things up. Looking at Sections 4.4.3 and 4.4.5, we see that it
does not: the interpretations of IT and II®* only require applications in ToS, not
abstractions.

Remark. Although we have not yet talked about infinitary signatures, we can
give a short summary why the current construction fails to work for their ToS. The
generic term algebra construction in Section 5.6.1 for infinitary signatures relies on
there being both lam and app for “infinitary” function types, with Sn-rules. This
makes the equational theory of ToS non-trivial, so quotients are necessary in the
construction of the syntax. However, this requires mixing quotients and infinite
branching, which we cannot yet handle.

We summarize the construction of the ToS syntax below. We refer the reader
to [KKL19] for details.

1. We define raw syntax by mutual induction. Substitutions are in normal form:
they are just lists of raw terms. Variables are also normalized as de Bruijn
indices. We define the action of substitution by recursion on raw syntax.
In [KKL19], raw syntax is not well-scoped, and substitution is partial, but

it would be also possible to start from well-scoped raw syntax.
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2. We inductively define well-formedness relations for contexts, substitutions,
types and terms, and show by induction on raw syntax that well-formedness
is propositional, i.e. proof-irrelevant. Alternatively, we could have defined

well-formedness by recursion on raw syntax.

3. We construct a term model of ToS from well-formed raw syntax. All equa-
tions in the model are provable from the properties of recursive substitution

on raw terms.

4. We pick a ToS model, and inductively define a family of relations between
the term model and the given model, which define the function graphs of the

model morphism that we aim to define. Then we show in order:

(a) Right-uniqueness of the relation, by induction on well-formedness deriva-

tions.
(b) Stability of the relation under substitution.

(c) Left-totality of the relation, by induction on well-formedness deriva-

tions.

We then define the actual model morphism using the functionality of the

relation.

5. For the uniqueness of the constructed morphism, we exploit right-uniqueness
of the relation: it is enough to show that any other model morphism maps

syntactic input to related semantic output.

This construction is formalized in Agda; see [KKL19]. It uses indexed inductive
families, UIP, function extensionality, and equality reflection in the form of Agda
rewrite rules, although the latter could be in principle omitted from the formal-
ization. Thus, it follows that any model of ETT with inductive families supports

finitary inductive-inductive types.

4.6.3 Reduction of Closed QIITSs

For closed QIITs, there is unfortunately no direct formalization which constructs
the ToS. There is one though which is close enough, by Menno de Boer and Guil-
laume Brunerie [BdB20]; see also De Boer’s thesis [dB20]. This constructs a type

theory with the following features:
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e A contextual category for base (instead of a cwf).
e Countable predicative universes.
o N, X, II, T, L, —+— and intensional Id.

The construction follows the 1-5 steps that we described previously in Section

4.6.1. It makes the following assumptions:

e A universe of strict propositions Prop. Every type in this universe enjoys
definitional proof-irrelevance. This Prop is used to define partial functions

and well-formedness relations.

Function extensionality.

Propositional extensionality for Prop.

Quotients by relations valued in Prop.

Indexed inductive families returning in Set or in Prop.

UIP is not assumed, instead the irrelevant equality in Prop is used everywhere.
Although it is only possible to eliminate from such equalities to Prop, this issue
is sidestepped by using an essentially algebraic specification of models, which is
fibered using Prop equations.

It is very plausible that this construction can be adapted to our theory of
closed QII signatures. De Boer and Brunerie construct a complicated open finitary
QIIT, while ours is a fairly similar closed QIIT, with fewer and more restricted
type formers. The openness comes from the use of contextual categories, which
involve indexing by external natural numbers. Contextuality does not make much
difference in the construction though, since raw syntax is always contextual by the
inductive nature of raw contexts.

Hence, it is safe to say that any model of an extensional type theory which

supports the assumptions of De Boer and Brunerie, also supports all closed QIITs.

4.7 Related Work

This chapter is based on the following publications, all coauthored by the current

thesis’ author.
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1. “Constructing Quotient Inductive-Inductive Types” [KKA19].
2. “Large and Infinitary Quotient Inductive-Inductive Types” [KK20b].
3. “For Finitary Induction-Induction, Induction is Enough” [KKL19].

We summarize the differences and enhancements in this chapter, in comparison to
the above (1)-(3) sources.

The theory of signatures is similar to that in (1), except (1) does not include
eliminators for IT and I1%*, and it has Id : TmT (Ela) — TmT (Ela) — TyT, i.e.
it cannot equate terms with arbitrary types.

The usage of 2LTT is novel compared to (1)-(3). In (1), the semantics had a
cwf with Id and K for each signature; this was extended with ¥ in (2) to get the
notion of flewf that we also use in this chapter.

The construction of left adjoints of substitutions is novel.

The current term algebra construction is the same as in (1), but universe levels
were not treated rigorously in (1); instead we adapt the more precise universe
treatment from (2). Notions of bootstrapping and levitation are also “backported”
from (2) to closed finitary signatures.

(3) is summarized in the current chapter without any notable change.

ToS-style presentations

Carette and O’Connor [CO12| presented algebraic signatures as contexts in type
theories. Altenkirch and Kaposi [AK16] observed that induction methods and

motives can be computed as logical predicate translations on typing contexts.

Generalized algebraic theories

FQII signatures and Cartmell’s generalized algebraic theories [Car86] are close in
expressive power, but they do not appear to be equivalent.

GATs may contain an infinite number of rules, while FQII signatures are finitely
long. On the other hand, FQII signatures have II®* and GATs do not. It appears
that infinite signatures are stronger than IT®*: it is possible to recover II®* by
adding a rule for every value of the external index, but it is not possible to recover
infinite signatures with TI®*. The reason is that in 1% : (Iz : Ty,) — (Iz —
TyI') — Ty, the I' context is fixed, so it is not possible to represent a family

of signature entries where each entry may refer to the previous entry within the



CHAPTER 4. FINITARY QII SIGNATURES 111

same family. For example, the following (pseudo)-GAT has no corresponding FQIT

signature:
Ag: U
Ay Ay — U
Ay i (ag: Ag) = Ayag — U
Az i (ag s Ao)(ay : Ayag) = Asapa; — U

Could we somehow include these? The most convenient way would be to define
signatures coinductively. However, that would cause a mismatch, that described
theories are inductive, while the ToS itself is coinductive, which rules out levitation
and bootstrapping. It is potential future work to investigate such coinductive
signatures.

This leads us to the main difference in formalization between GATs and FQII
signatures: the theory of GATs itself is not presented as a GAT, instead it has a
low-level presentation with raw syntax and well-formedness relations. As a result,
the immediate metatheory of GATs is roughly as tedious as we can expect from
raw syntaxes.

This is a motivation for formally getting away from GATSs, by showing their
equivalence to contextual categories. Contextual categories are algebraic and more
convenient to handle than GATs. In [Car78] one leg of this equivalence is the con-
struction of a classifying contextual category for each GAT, which is essentially a
term model construction from quotiented raw syntax. A downside of this setup
is that classifying contextual categories cannot be easily written out by hand like
GATs. Thus, GATs necessarily remain the practical way for specifying the classi-
fying categories.

In contrast, the theory of FQII signatures is itself algebraic, possesses a nice
model theory (as an infinitary QII theory), and it is only mildly more complex than
the theory of contextual categories. Since the immediate theory of signatures is
already quite nice, we do not feel as much pressure to look for nicer presentations.

Nevertheless, compact alternative presentations would be still interesting to

research.

e We could look for for an analogue of the GAT-contextual-category correspon-
dence for our signatures. This would send each signature to its classifying

category.
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e We could also look for an analogue of the Gabriel-Ulmer duality [GUO06].
This would send each signature to its category of models in Set. In the
other direction, we would need a way to restrict categories to those which

are categories of algebras.

Essentially algebraic theories

Essentially algebraic theories (EATS) [Fre72] are categories with finite limits. This
is a more semantic notion of an algebraic signature, much like how contextual
categories are a more semantic presentation of “syntactic” GATs. For EATs I'
and A, the I'-algebras internal to A are simply the finite limit preserving functors
from I' to A, while algebra morphisms are natural transformations.

We have more syntactic notions of essentially algebraic signatures as well. For
example, the signatures of Addmek and Rosicky [AAR'94, Section 3.D] or the
Partial Horn theories of Palmgren and Vickers [PV07] are such. These signatures
are also specified using raw syntax, but they are significantly easier to formalize
than GATs, as the syntax of signatures admits fewer dependencies. However, the
lack of dependency also causes a significant encoding overhead on comparison to
GATs or FQII signatures. For a classic example, the theory of transitive directed

graphs is given with an FQII signature as

V U
E V—=V-=U
—o—:(ijk:V)—Eij—>Ejk—EI(Eik)

The same in a pseudo-EA notation could be:

Vv : Set

E : Set

src :E—=V

tgt :E—V
—o—:(fg:E)—>tgtf=srcg— (h:E) X (srch=srcf) X (tgth =tgtg)

In short, the FQII notation is “indexed”, while the EA is “fibered”. Also recall
Theorem 3. While this example is not wildly different in the two cases, if we move
to more complex theories, such as type theories, the encoding overhead of EA

signatures is much greater. In informal mathematics, this is still not an issue, but
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in mechanized mathematics, it is. Type dependencies are a formal complication,
but in proof assistants they enable more compact definitions. They also often force
indices to be particular values, which enables inference and unification to fill in
more details in surface syntaxes.

Sketches (see e.g. [Bar85, Section 4]) are another way to specify EATs. They
lie somewhere between the syntactic/logical styles of specification, and just taking
EATs to be finitely complete categories. They support an elegant metatheory,
but they involve an encoding overhead which is likely unworkable in mechanized
settings.

All in all, there is a rich literature on EATS, sketches and related topics, and
it would be interesting to try to connect our signatures to any of these, or try
to reproduce the numerous related results in categorical universal algebra. This

remains future work for now.

Prior work on (quotient) inductive types

The current work grew out of a line of research in the field of type theory. This
involved working out more and more expressive classes of inductive types.

Martin-Lof’s W-types [ML84] are an early example for a scheme for inductive
types. In fact, it is better viewed as a single parameterized inductive type, which
allows construction of a remarkable range of inductive types [Hug21], although
with some encoding overheads.

Inductive families [Dyb94] allow indexing the inductive sort with external types.
This directly supports only single-sorted signatures, but some form of mutual
induction can be easily modeled through the indexing. Inductive families have
become a core feature in all major implementations of type theories, such as Coq,
Idris, Lean or Agda.

Inductive-recursive types [DS99] allow mutual definition of an inductive sort
and a function which acts on the sort. These types are absent from this thesis, they
are not representable with any of our theories of signatures. Induction-recursion
is notable for tremendously boosting the proof-theoretic strength of a type theory;
a primary motivation for it was to explore the limits of predicative constructive
mathematics. It is useful for modeling a wide variety of universe features internally
to a type theory [Kov22a).

Induction-induction was described in [AMFS11] and in [NF13]. This notion

allowed two inductive sorts, where the second one may be indexed over the first.
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As we mentioned previously, this notion is more restricted than what was covered
in this chapter.

[ACDT"18] investigated QIITs. The notion of signature here is more of a seman-
tic nature than ours. Signatures are defined simultaneously with their categories
of algebras. A signature is a inductive list of functors: at each signature entry, we
extend the category of algebras with a functor whose domain is the current cate-
gory of algebras. This can be viewed as a generalization of F-algebras as a form of
specification. However, there is no strict positivity restriction in signatures, hence
no attempt at constructing initial algebras either.

We will look at work related to infinitary QITs in Section 5.8 and at work
related to higher inductive types in Section 6.3.2.



CHAPTER D

Infinitary Quotient Inductive-Inductive

Signatures

In this chapter we present another theory of signatures, for infinitary quotient
inductive-inductive signatures. As we will see, the reason for considering the fini-
tary and infinitary cases separately is that they support different semantics.
First, we specify signatures and define semantics in 2LTT. Then, like in the
previous chapter, we switch to a extensional TT setting and look at term algebras

and related constructions.

5.1 Theory of Signatures

Metatheory. We work in 2LTT. We assume the following type formers in the
inner theory: T, X, extensional identity — = — and II. Note that II is an extra

assumption compared to what we had in the finitary case.
Definition 58. A model of the theory of signatures consists of the following.

e A cwf with underlying sets Con, Sub, Ty and Tm, all returning in the outer
Set universe of 2LTT.

e A Tarski-style universe U with decoding El. U is closed under the following

type formers:

— The unit type T.
— Y-types X : (a: TmI'U) — Tm (' > Ela) U — Tm ' U, with specifying

isomorphism

(proj, ——) : TmI'(El(Xab)) ~ (t: TmI' (Ela)) x TmI (EI(bid, t]))

115
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— Extensional identity Id : TmI' (Ela) - TmI' (Ela) - TmI' U, speci-
fied by (reflect, refl) : Tm T (El (Idtu)) ~ (t = u).

— Small external product type II**: (Iz : Ty)) - (It = TmI'U) —
TmTI'U, specified by (app®*, lam®*) : TmI (II®* [z b) ~ ((i : Iz) —
Tm T (El (bi))).

e Internal product type Il : (a: TmIT'U) — Ty (I'> Ela) — Ty T, specified
by (app, lam) : TmT' (ITa B) ~ Tm (I'> Ela) B.

e External product type I15¢ : (Iz : Ty,) — (Iz — TyT') — Ty T, specified
by (app®®, lam®t) : Tm T (1P [z B) ~ ((i : Iz) — TmT (B1)).

Once again we assume that an initial model for ToS exists, and a signature is

a context in the initial model.

Notation 19. We employ the same notations for signatures as in Section 4.1. In
addition to that, we have the usual internal notation for T and X, and we write
(x : A) = B for II®* and A** for lam®*.

Let us do a comparison to the finitary case. First, the new signatures do not
support sort equations, since there is no identity type for arbitrary terms, only for
terms with types in U. Second, the universe is not empty anymore, it supports T,
Y and the small external product type I1®*, which can be viewed as an analogue

of IT®* inside U. We look at example signatures.

Example 25. Infinitary constructors can be given with I1®*. A classic example
is W-types. Assuming S : Ty, and P : S — Ty,, we have the following signature

for P-branching well-founded trees:

w U

sup : (s:5) =B (Ps == W) = EIW
Note that since P s —* W is in U, it can appear on the left side of —. If P s is
an infinite type, sup branches with an infinite number of inductive subtrees. Of

course, finitary branching can be also expressed with II®*, but that use case was

already possible with finitary signatures, by iterating — finite times.

Example 26. Equations can appear as assumptions now. The simplest example
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is set-truncation for some A : Ty,:

|A‘0 : U

embed : A =P El|A],

trunc : (zy:|Alo)(pg:Ildzy) — El(ldpq)
However, this ends up being redundant in our semantics, since we assume UIP,
and every semantic underlying type will be a set. Does this mean that recur-
sive equations are useless? We do not think so. In the specification of cubical
type theories, there are boundary conditions which can be given as |d assump-

tions [CCHM17,AHW16, AHH18]. Also, it seems that these conditions cannot be

easily contracted away. For an example of contraction, the signature
o> (A:U)>(c1 i ElA) > (c2: (x: A) = Idz ey — EIA)
can be rewritten to the equivalent
o> (A:U)> (¢ : ElA) > (o : EIA)

signature. However, we cannot mechanically eliminate the Id from the following
signature.

A:U

B:A—=U

b, : A— EIB

b,: A— EIB

a :(zy:A)—=Id(byx)(byy) — EIA

Whether we can reformulate a without the Id condition depends on what kind of
equational theory we specify for B in the omitted parts of the signature.
However, recursive equations can be always encoded by internalizing exten-

sional equality in signatures. For example:

A U

EqA :A—-A—> U

refl  : El(EqAaa)

reflect : EQA aga; — El(Idaga;)

UIP :(pq:EqAaga;) — El(ldpq)
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Still, we keep recursive equalities around, since they are more ergonomic than the
above encoding, and they pose no extra difficulty in the semantics. The current
formulation of the Id type will be more useful in Chapter 6, where higher equalities

can be proof-relevant.

Example 27. All theories of signatures that we discussed so far, have (infinitary)
signatures.
For finitary signatures, the ToS is itself infinitary because of II®*. We assume

an universe Uy in Ty,. In the signature, we have

Con : U
Ty :Con— U
M5 {T": Con} — (A : Up) =5 (A == TyI') — EI(Ty D)

In the signature for infinitary ToS, we have

Univ: {T": Con} — Ty
1% : {T': Con} — (A : Ug) =5 (A == TmT Univ) — TmT Univ

Remark. When we will take the semantics of the above signature, we will not
exactly get back the theory of signatures that we are using right now. We have
ToS in 2LTT now, but the semantics is in the inner theory. What we can do
though, is to assume that the inner theory is also a 2LT'T. Then we might assume
that the inner theory of that is again a 2LTT, and so on. This is a possible (and
quite natural) generalization of 2LTT to n-level type theory. In this setting, one
round of self-description requires a bumping of levels in the sense of n-level TT.
In this thesis we do not explore this, instead we use a more conventional universe

hierarchy in an extensional TT, to investigate self-description.

Example 28. We have seen in Example 15 that Ty,-valued presheaves have fini-
tary signatures. With infinitary signatures, we can also cover monads on Ty,. We

assume a universe Ug : Ty,.

M :Ug— U

map (A — B) -P*MA = EI(MB)

mapig : El(Id (mapidm)m)

map, : El(Id (map (f o g)m) (map f (map gm)))
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return : A =5 El(M A)

bind :MA— (A—""MB)— EI(MB)

return, : El (Id (bind m return) m)

return, : El (Id (bind (returna) f) (f a))

assoc : El(Id (bind (bind m f) g) (bindm (Aa.bind (fa)g)))

We rely on —** to specify binding. The join-based specification would not
work, since M (M A) is not valid in signatures. The above signature can be helpful
for deriving some of the metatheory of Dijkstra monads [MAA'19, Section 5.

In the 2LTT-based semantics, we will get M : Uy — Ty, which is not quite an
endofunctor. In the ETT-based semantics in Section 5.6 we will be able to pick
universe levels more precisely, so we can specify algebras where M : Set; — Set;.
However, we will not get free monads from the term algebra construction, because
the universe levels do not match up as needed. Recall from Section 4.4.3 that the
level of sets of terms is j + 1 when j is the level of external indices in a signatures.
Hence, if the parameter types to M are in Set;, then external indices are in Set;,,

so we get M : Set; — Set; 5 in the term algebra for monads.

Example 29. It is worth to note that every set-truncated higher inductive type
from the Homotopy Type Theory book [Unil3] is covered. This includes

e The cumulative hierarchy of sets [Unil3, Section 10.5].
e Cauchy real numbers [Unil3, Section 11.3].

e Surreal numbers [Unil3, Section 11.6].

5.2 Semantics

5.2.1 Overview

As we mentioned, we need a different semantics for infinitary signatures. First,
we look at why the previous semantics fails. We try to model signatures again as
flewfs, and morphisms as strict flewf-morphisms. The simplest point of failure is
the interpretation of the unit type T : Tm T U.

In the semantics, this is the same as defining T : Sub I Ty,, where Ty, is

the flcwf of inner types. The only sensible definition here is the functor which is
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constantly Ty. But this does not strictly preserve context comprehension or the

finite limit type formers. If we have

T : Conp — Ty,
TTI .= To

then we have T (I'bp A) = Ty, but T I'bqy, T A= T x To. Thus, To # Tox Ty,
but of course Tg >~ To X Ty.

Let us look at TI®** : (A : Tyy) — (A — TmIT'U) - TmT U as well, since that
is a more interesting new feature than the unit type. The only viable definition is
to take the A-indexed product of SubT' Ty, morphisms, so we map objects of T'

to function types:
Conpet op ' := (v : A) — Conp, I’
But now we have
(TI®* Ab)er = (a: A) — Conpger = A — Ty

Also, ey = Ty. Hence, (IT®** Ab)er # T, although (IT*** A b)er ~ T,

Intuitively, if U has no type formers, the terms in U are neutral, i.e. variables
applied to zero or more neutral terms. But variables in the semantics simply
project out components from iterated -types. For example, the action of q :
Tm (' > A) (A[p]) on objects, types, morphisms and terms is given by taking
second projections. Since all structure in I' > A is given by pairing things, q
strictly preserves all structure, and the same goes for all variables.

Substitutions and terms in the finitary ToS are only allowed to freely reshuffle
structure. We can forget, duplicate, or permute signature entries, or build neutral
expressions from assumptions. In contrast, the infinitary ToS allows us to take
small limits of assumptions, using T, ¥, Id and II®* to build new inhabitants of

U. We summarize the process of getting the new semantics:

1. Strict structure-preservation for type formers in U generally fails, but they

still preserve structure up to isomorphism.

2. Hence, we switch from strict flewf-morphisms to weak ones, which preserve

o, comprehension and fl-structure weakly.

3. However, in the finitary case we often relied on transporting along preserva-

tion equations. We need to recover transports along isomorphism.
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4. Hence, we extend semantic types from displayed flewfs to isofibrations, which

support the required transports.

5. However, this rules out sort equations because they are not stable under
isomorphisms. For example, for sets A, B, C' such that A ~ B and A ~ (|,

it is not necessarily the case that B = C.

Univalent semantics

The isofibrant semantics will turn out to be significantly more technical than the
strict semantics. Instead of working with isofibrations in an extensional setting,
could we work with univalent structures in homotopy type theory? In other words,
work with univalent categories of algebras, and univalent displayed categories over
them [AL19]. A major benefit of the univalent setting is that we would get a struc-
ture identity principle [Acz11] out of the semantics, which says that for algebras,
isomorphism is the same as equality.

However, it appears that univalent cwfs are overall yet more technical to han-
dle than isofibrations. In an univalent cwf, objects and types are generally h-
groupoids, so we would have groupoids of algebras instead of sets of algebras.
This implies that type equalities are between groupoids, so they need to be co-
herent, if we want them to be well-behaved. Hence, Ty is not an 1-presheaf over
contexts, but rather a (2, 1)-presheaf.

Alternatively, we could simplify the task by only constructing univalent cate-
gories of algebras, and skipping the family structure (and fl-structure). This would
be the minimum amount of effort that would yield the structure identity principle.

Both of these would be interesting to check in future work. As a third alter-
native, instead of stopping at set-truncated algebras in HoT'T, we might as well
consider types at arbitrary h-levels, and construct (w, 1)-categories of algebras.
This comprises a semantics of higher inductive-inductive signatures. We do not
present a full higher-categorical semantics in this thesis; we only present a fragment
of it in Chapter 6.

5.2.2 Model of the Theory of Signatures

In the following we present a model of ToS. We call it M, and like before, we use

bold font to refer to components of M.



122 5.2. SEMANTICS

Contexts

I' : Con is again an flewf, but with a minor change: K is not strict anymore, so we
have (appg, lamk) : TmT' (KA) ~ SubT' A. As we will see shortly, A[o] does not

support strict displayed K anymore, hence the change.

Substitutions

o : SubT' A is a weak flcwf-morphism, that is, a functor between underlying
categories, which also maps types to types and terms to terms, and satisfies the

following mere properties:
1. o (Alo]) = (o A)[o 0]
2. o (tlo]) = (ot) o o]
3. The unique map € : Sub (o o)  has a retraction.

4. Each (op,0q):Sub(o(I' > A)) (6T > o A) has an inverse.

In short, o preserves substitution strictly and preserves empty context and
context extension up to isomorphism. We notate the evident isomorphisms as
o,:0e~eand o, :0(I'>A) ~ o' > o A. Our notion of weak morphism is

the same as in [BCM120], when restricted to cwfs.

Theorem 7. Every o : SubI' A preserves fl-structure up to type isomorphism.

That is, we have

os:0(SAB)~ % (aA)((e B)lo!])

o:o(ldtu) ~Id(at)(ou)

ok :0(KA)~K(ogA)
These are all natural in the following sense: for o : SubprI' A, if we have ox as a
type isomorphism in o A, if we reindex it by o, we get ox as a type isomorphism
i o I'. The same holds for og and ok.

Moreover, o preserves all term and substitution formers in the fl-structure.

For example, o (projlt) = projl (oxlid, o t]).
Proof. For oy, we construct the following context isomorphism:

(6T >0 (XAB))~ (ol >0 Av (oB)o,!])
~ (oI > X (o A) (0 B)lo,]))
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This isomorphism is the identity on o I', hence we can extract the desired oy :
o0 (XAB)~Y (o A)((oB)loy']) from it.

For o4, both component morphisms can be constructed by refl and equality
reflection, and the morphisms are inverses by UIP. We omit here the verification of
naturality and that o preserves term and substitution formers in the fl-structure.

For ok, note the following:

(e g (KA)) ~ (oo o(KA)) ~o(e> KA)
~ogA~(e> K(oA))

This yields a type isomorphism o (KA) ~ K (o A) in the empty context, and we

can use the functorial action of € : SubI"e to weaken it to any I' context. [

Identity and composition

id : SubI' T is defined in the obvious way, with identities for underlying functions
and for preservation morphisms.
For o 06, the underlying functions are given by function composition, and the

preservation morphisms are given as follows:

(oo 6)’1 =08, '0d !

cgod) =06 lod!
> > >

It is easy to verify the left and right identity laws and associativity for — o —.

Lemma 6. The derived preservation isomorphisms for the fl-structure can be
decomposed analogously; all derived isomorphisms in id are identities, and we

have

(0 0d)s =0 dx 00
(0’05)|d = 0'5|d 05|d

(o 0d)k =0 dk o dk
On the right sides, — o — refers to composition of type morphisms.

Proof. In the case of Id, the equations hold immediately by UIP. For > and K, we

prove by flewf computation and straightforward unfolding of definitions. ]
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Empty context

The empty context e : Con is the same as before, i.e. the terminal flewf. Since
the unique € : SubT e morphism strictly preserves all structure, it also a weak

morphism.

Types

We define Ty I : Set as the type of split flewf-isofibrations over I'. This consists
of a displayed flewf together with split iso-cleaving structure. For the displayed
flewt part, we reuse previous notation from Section 4.2.4. For the iso-cleaving, we

make some auxiliary definitions first.

Definition 59 (Displayed type categories). For each I' : Cona I, there is a dis-
played category over the type category Ty L', whose objects over A : Typ L' are
elements of Ty 4 I' A, and displayed morphisms over ¢t : Tmp (> A) (B]p]) are el-
ements of Tma (I'> A) (B[p])t. The identity morphism is given by qa, and the
composition of ¢ and wu is t[pa, u]. Analogously to Definition 44, this extends to a

displayed split indexed category.

Definition 60 (Displayed isomorphisms). A displayed context isomorphism over
o: '~ A notated o : I' >, A, is an invertible displayed morphism ¢ : Subs I' A o,
with inverse o= : Subg AT o7t A displayed type isomorphism over t : A ~ B,

notated ¢ : A ~, B, is an isomorphism in a displayed type category.

Definition 61. A vertical morphism lies over an identity morphism. We use this

definition for context morphisms (substitutions) and type morphisms as well.

Definition 62 (Split iso-cleaving for contexts). This lifts a base context isomor-

phism to a displayed one. It consists of

coe :I'~A — CongI' -+ Cong A

coh :(g:L~A)IT:Conygl') T ~, coeaT
coe : coeidT'=T

coe’ :coe(god)I'=coeg(coedl)
coh : cohidT" = id

coh® :coh(god)I' = coho (coedI')ocohdT

Here, coe and coh abbreviate “coercion” and “coherence” respectively.
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Definition 63 (Split iso-cleaving for types). This consists of

coe :A~B—>Ty,TA—Ty,I'B
coh :(t:A~B)(A:Tyy,I'A) - A~ coet A
coe'd : coeid A= A

coe’ : coe(tou) A= coet(coeuA)

coh : cohid A = id

coh® : coh (tou) A= coht(coeuA) ocohu A

Additionally, for o : Suby I' A o, we have

coe[] : coe (tlg o p,q]) (A[o]) = (coet A)[o
cohl] : coh (t[g o p,q]) (A[o]) = (coht A)[o]

—

Definition 64. A split flcwf isofibration is a displayed iCwF equipped with split

iso-cleaving for contexts and types.

Remark. 1t is not possible to model types as fibrations or opfibrations because
we have no restriction on the variance of ToS types. For example, the type which
extends a pointed set signature to a natural number signature, is neither a fibration

nor an opfibration.

Type substitution

We aim to define —[-] : TyA — SubI’ A — TyT', such that Afid] = A and
Alo 0 6] = A[o][6]. As before, the underlying sets are given by simple composi-

tion:

COHA[U] E = ConA (0’ £)
Suba) ' A :=Subs ' A (o 0)
TyaTA =Ty, (0 A)

TmA[U]FAE = TmAFA(O't)

The difference from the finitary case is that instead of preservation equations,
we have isomorphisms, coercions and coherence. However, we can recover essen-

tially the same reasoning as before because all the previous transports still work.
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Context and type formers are given by coercing A structures along preservation

isomorphisms by o. For example:

*Alo] = COGO'._1 oA

['>ajg) A= coeoy 1Toa A)

(
ldajpytu = coeoy' (Idatu)
(Ka

A)

Kafe] A = coe 0'K1

Term and substitution formers are given by composing coh-lifted isomorphisms

with term and substitution formers from A. For example:

€A[o] = coha__lvoeA
PA[s] :=pao(coho, ! (T'>A)?
(0,a0) t) :=coho! (A A)o (0,4 t)

As we mentioned, only weak K is supported in A[e]. For strict K we would have

to show:

SubaTA(og)=TmuT (coeay’ (KaA))(o0)

By strict K in A, it would be enough to show
TmaT (KaA)(og)=Tmal (coeoy' (KaA))(oo)

But there is no reason why these sets should be equal, so we instead produce an
isomorphism.

Equations for term and type substitution follow from naturality of preservation
isomorphisms in o, coel|, coh[] and substitution equations in A.

Iso-cleaving is given by iso-cleaving in A and the action of o on isomorphisms,
so that we have coeg[s) o' := coey (0 0) " and cohypp)a I := cohy (o 0) T

Functoriality of type substitution, i.e. Afid] = A and Ao o §] = Alo][d],

follows from Lemma 6 and split cleaving given by coed, coe®, coh'® and coh® laws

in A.
Terms

TmT A : Set is defined as the type of weak filCwF sections of A. The underlying

functions of ¢ : TmTI A are as follows:

t:(L:Conp) — Conal
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t:(c:SubprT"A) — Subs (tL) (tA) o
t:(A:Typ) = Ty, (1) A
t:(t: TmpLCA) — Tmuy (tD) (AL

Such that
L. t(Alg]) = (t4)[ta]
2. t(to]) = (1) [t o]
3. The unique €4 : Sub (te)eid has a vertical retraction.
4. Each (tp, tq):Sub(t (I > A)) (tL > t A)id has a vertical inverse.

Similarly to what we had in Sub, we denote the evident preservation isomor-
phisms as t, : te >~y e and t, : t (I > A) ~g tL' >t A In short, weak sections
are dependently typed analogues of weak morphisms, with dependent underly-
ing functions and displayed preservation isomorphisms. We also have the derived

fl-preservation isomorphisms.

Theorem 8. A weak section t : TmI A preserves fi-structure up to vertical type

1somorphisms, that is, the following are derivable:

ts t(SAB) ~g S (tA) (B[t )
t|d i 7 (|d§g) ~id Id (tt) (t@)
t :t(KA) ~g K(tA)

Also, the above isomorphisms are natural in the sense of Theorem 7, and t pre-

serves term and substitution formers in the fi-structure.

Proof. The construction of isomorphisms is the same as in Theorem 7. Indeed,

every construction there has a displayed counterpart which we can use here.  [J

We note though that the move from Theorem 7 to here is not simply a logical
predicate translation because we are only lifting the codomain of a weak morphism
to a displayed version, and we leave the domain non-displayed. We leave to future

work the investigation of such asymmetrical logical predicate translations.
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Term substitution

—[-]: TmMmAA — (o : SubT'A) — TmTI (A[o]) is given similarly to —o—
in Section 5.2.2. Underlying functions are given by function composition, and

preservation morphisms are also similar:

(tlo]) ' =totot]!

(tlo]) ' =to tot]!

We also have the same decomposition of derived isomorphisms as in Lemma 6. We
do not have to show functoriality of term substitution here, since that is derivable

in any cwf, see e.g. [KKA19].

Comprehension

I' > A : Con is defined as the total flewf of A, in exactly the same way as in the
finitary case, since the additional iso-cleaving structure plays no role in the result.
p:Sub(’'>A)T and q: Tm(I'> A) (A[p]) are likewise unchanged; they are
strict morphisms, so also automatically weak morphisms. Substitution extension

(o, t) is given by pointwise combining o and ¢, e.g. Congpy ' := (o L, tT).

Strict constant families

We have the same definition for KA : Ty I as in the finitary case, although we
need to define iso-cleaving in addition. Fortunately, coercions and coherences are

all trivial because K A does not actually depend on T'.

coekaol' :=T

coekatA = A

Universe

U : Ty is exactly the same as before. We define it as the type which is constantly
the flewf of inner types, so it inherits the trivial iso-cleaving from K.
Ela : TyT is again the displayed flcwf of the elements of @ : TmIT'U. The

underlying sets are unchanged:

Congo I’ =Tmg (al)
Subgilo 'Ac:=acl' = A
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Ty A =Tmy(a AT)
TmE|aFA1_E = atf‘ =A

We need to adjust definitions to show that Ela supports all required structure.
Previously, all context and type formers were inherited from U, since a strictly
preserved them. Now, a preserves structure up to (definitional) isomorphism of
inner types. Hence, the adjustments are quite mechanical; they are like wrapping
all definitions in “unary record constructors” given by preservation isomorphisms.

For example:

®Elq = a_l tt

(F >Ela A) = a;l (F, A)

We likewise use preservation isomorphisms to define K, Id and . Context co-
ercion is coecgI' := aoI'. Type coercion, for A : a AT is given as coet A =
at(a;' (T, A)).

Unit type

T : TmI'U is the constantly Ty morphism, i.e. it maps objects to T and types
to A_. Ty, and maps morphisms and terms to the identity function. It clearly

preserves e and —>— up to isomorphism.

Sigma type

For a : TmI'U and b : Tm (T > Ela) U, we define Xab : TmI'U as the

component-wise Y of a and b. For the action on [' : Conp, we have:

(Sab)l: Ty,
(Xab)T :=(a:al) xb(T, a)

For the action on ¢ : SubI' A, we have:

(Xab)og:(a:al)xb(l,a) > (a:alA) xb(A, a)
(Xab)og:= )Xo, f). (aca, b(ag, refl) 5)

Above, the second field should have type b (A, a o «), while 5 : b (L, «). Therefore

we need a morphism in I' > Ela from (I, o) to (A, ac«), which is defined as
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(o, refl), where refl : ac o = ag . The action on A : Ty is

(Xab)A:(a:al)xb(l, a) = Ty,
(Xab)A:=X(a, B).(a/ :aAa) xb(A, o)

Here we are somewhat running out of notation: we use o’ to refer to a type over

a :al in the displayed cwf of elements Ela. The action on terms is analogous:

(Xab)t: (o, B): (a:al)xb([,a)) = (' :aAa) xb(A, o)
(Xab)t:= (o, ). (ata, b(t, refl) 5)

For the preservation of e, we need to show (X a b) e ~ T,. Unfolding the definition,
we get ((a: ae) X b(e, @)) ~ Ty. This holds since ae >~ T, so a e is contractible,
thus (e, @) = epygq, and we also know be >~ T(. For the preservation —>—, we
need

(Xab)(LrA)~(y:(Zab)l) x (Xab)Ay

Unfolding definitions and reassociating > on the right side:

(@:a(l>A)) xb((L>A), o)

(a:al)x (B:b(,a)) x(d:ahda)xb(A, )p

Since a, : a (L'>A)) ~ (a:al) x (B:b(L, a)), we can rewrite the left side using

pattern matching notation as
(a;' (7, @) a (T A)) x b((L>A), (v, @)

Now, since ((I'>A), (v, a)) = (L

=

Y)brpeia (4, @), we know that b ((F'>A), (v, «))
is also isomorphic to the evident X type, and the preservation isomorphism follows.
Projections and pairing for 3 a b are defined in the obvious way by component-

wise projection and pairing.

Identity

For t and w in TmTI (Ela), we define Idtw : TmI'U as expressing pointwise
equality of weak sections. We rely on the assumption that Ty, has identity type.
(dtu)L :=(tLC=ul)
(dtu)A:=Xe.(tA=uA)
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Above, t A = u A is well-typed because of e : t[' = w['. For substitutions, we

have to complete a square of equalities:
(Idtw) (o :SubTA) : (#1 = ul) — (A = uA)

This can be given by to : ac (tL') =tA and uo : ag(ul') = uwA. The action
on terms is analogous.
The o-preservation (te = ue) ~ T follows from ae ~ Tg. For p-preservation,

we need to show

tLCrA)=ulrA))~(e:tl=ul)x (tA=uA))

This follows from >-preservation by a. Equality reflection and refl : Idtt are also

evident.

Small external product type

For Ir : Ty, and b : Ir — TmTI'U, we aim to define II** [z b : TmI'U. The

underlying functions are:

(IM** [z b)T :=(i: [x) > bil
(II** Ixb)o = \fi.bio(fi)
(MI** Iz b) A = AT. (i : Ir) — bi A(T9)
(I Iz b)t = Xfi.bit(f1)

We rely on II in the inner theory. The preservation isomorphisms are pointwise
inherited from b. One direction of the isomorphisms is defined as follows. Note
that ey = T and by is 2.

(M Iz b); . T — (II™* Iz b) e
(™ Iz b) ! = A i (bi) ' tt
(M Iz b);! (D (™ Iz b)) x ((IT™* Iz b) AT)
— (TI™* [z b) (> A)
(TI** [z b);' .= A (T, A)i. (bi); (Ti, Ad)
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Internal product type

For a : TmI'U and B : Ty (I' > Ela), we aim to define ITa B : TyI'. The

underlying sets are unchanged.

Conapl’  :=(y:al)— Cong (L, ")
Subnepl'Ag:=(y:al') — Subg (I'y) (A(ac®)) (g, refl)
Tynegl'A ={y:al}(a:ady) = Tyg(l'7)(4, o)
Tmpel At =(v:al) — Tmp (['v) (A(aty)) (¢, refl)

Likewise, all structure is defined pointwise using B structure. Similarly to the El
case, we have to sometimes fall through the defining isomorphisms for a structure.

For comparison, in the finitary case we had the following definition:
(TCerneaB A) (7, a) = (Tyrp Aa)

Here, (v, a) : a(LC> A), so also (v, ) : (v : al') x a A+, so the ¥ pattern-
matching notation is justified in the definition. In the current infinitary case, we
have (a,, a;') : a(L>A) ~ ((v : al') x a Av) instead. But we can use the
intuition that set isomorphisms are like unary record types, so we can still give a

pattern-matching definition:
Trnes A) (a' (7, @) = Tyep Aa)

For the definitions of other type and term formers, we likewise insert the isomor-
phisms appropriately. It remains to define iso-cleaving II. Coercion is given by

mapping indices backwards in Ela and coercing outputs forwards in B.
coea I := \v.coep (o, refl) (T (a(c™ 1) 7))
coet A == Avya.coep (t,refl) (A(a (t7!) (as'(v,a))))

Likewise, coh-s are given by backwards-forwards coh-s. As before, app and lam

are defined as currying and uncurrying the underlying functions.

External product type

For Iz : Set; and B : Ir — TyT, we define II®* [z B : TyT as the [z-indexed
direct product of B. Since the indexing is given by a metatheoretic function,
every component is given in the evident pointwise way, including iso-cleaving.
This concludes the definition of the M model.
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5.3 Left Adjoints of Substitutions

In the following we adapt Section 4.2.7 to infinitary signatures.

e We again write [-] for the interpretation into the flewf model M.

e Wealsoadd T: Tylland ¥ : (A: TyI') - Ty(I'> A) — Ty to the ToS.
Again we do not elaborate much on their semantics; T is given as K e in the

model and ¥ is given by component-wise .

We again fix €2 : Con and define heterogeneous morphisms. The types of elimina-

tors stay exactly the same:

HM

:(I': Con) = T4 = SubQT — Ty Q
(0 :SubT A) = TmQ (THM vy v) = TmQ (ATM (64 45) (0 0 1))
SHM (A TYD) = Aty = TmQ(Afp]) = TmQ (DM A 40) — Ty Q
M Tm T A) (M Tm Q (DM 40 m1)) = Tm Q (AT (84 5) (]) A7)

HM

We only need to show that the new type formers in U, namely T, X, Id and TI®¢,
can be also covered in the definition of —~#*. The new type formers turn out to

work exactly as mechanically as the previous ones. We have the following:

TAMAIM TmQ (T -5 EIT)
THMAHM = \BE_ gt

(X a )M HM
TmQ (o : a70) x (b (0, @))) =FCEIN(E (a = a[n]) (b1, o))
(S a )M AHM .= \Bt (o ) (afTM AHM o pHM (AHM pef]) 3)

(1 I b) M A HM - Tm Q (((i 2 1x) = (b)2 y0) =BCEI((i 2 Ix) = (bi)[7]))

(Hext Ix b)HM 7HM = /\Ext f )\exti' (f Z)HM ,YHM
For Id, we again have to complete a square.
(It )™ TmQ (4 70 = u 7o) =5 EL(Id (¢[71]) (u[n])))

This follows from tM ~HM and yH"M ~HM the same way as in the flewf semantics

before.
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Theorem 9. If every infinitary QII signature has an initial algebra, then for every
v :SubQA, there exists a left adjoint of [v] : [Q] — [A].

Proof. For each 6 : A4, the comma category d/[v] can be specified (up to isomor-
phism) by the signature Q> A”M §u thus it has an initial object. Hence [v] has
a left adjoint. W

5.4 Signature-Based Semantics of Signatures

We have seen that the —#M interpretation yields a notion of algebra morphism
that is specified inside ToS. What else can we represent in ToS? For example,
can we internalize —, -™ and —°? In this section we show that the full flewf
semantics can be expressed internally to the ToS syntax.

This means that for each I' : Con, we get ['* : Tye as the notion of algebras,
™ Ty (e (70 : T4) > (1 : T4)) as the notion of morphisms, id : Tm (e > (v :
I'4)) (TM[yy + 7, 71 + 7)) for the identity morphisms, and likewise we get the
whole flewf of algebras in such an internal manner.

As we will shortly see, capturing the full flewf semantics is possible with the
infinitary ToS, but not with the finitary ToS because it lacks the necessary type
formers in U.

It would be needlessly tedious and repetitive to redo the flewf semantics while
explicitly working with ToS components. Instead, we repurpose 2LTT for this use
case. Recall that 2LTT allows to get semantics internally to any cwf with II, X,
T and Id. In the current section we aim to get semantics internally to the ToS
syntax. In short, this means that we work in a 2LT'T where the inner theory is
the theory of signatures. The picture is a bit more nuanced though.

First, since ToS lives inside 2LTT, and we want to get presheaves over ToS in
the presheaf model, the metatheoretic setting of the presheaf model must be also

a 2LTT. This might get a bit confusing, so let us expand:
e The syntax of 2LTT internalizes the ToS syntax as an assumed type former.

e The presheaf model of 2LTT lives inside yet another 2LTT, let us call it
2LTT*, which embeds both the 2LTT syntax and the ToS syntax separately.

e In the presheaf model, the base cwf is the cwf of the ToS syntax in 2LTT*.
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e The Ty, type former in 2LTT is interpreted in the presheaf model using the
Ty, type former in 2LTT*.

o We add Tysjg : Set and Tmgig : Tysig — Set to 2LTT. Ty is interpreted as the
presheaf of ToS types, and Tmgg is interpreted using the displayed presheaf
of ToS terms, following Definition 36.

e We close Tygg under type formers which represent all type formers in ToS.
Like in the previous section, we assume that ToS types are closed under T
and X, so we have T, ¥, inductive II, II®* and U in Tyge. The U in Tygg
has El : TmggU — Tysg, and it is closed under T, X, II®* and Id. In the
presheaf model, all structure in Tysg is interpreted using ToS type formers

in the evident way.

Notation 20. We shall omit Tmgg in the following, similarly to how we previously
omitted Tmy. We keep omitting Tmg in the new setup as well. However, we will

still mark El : U — Ty explicitly.

For reference, we list type formers in Tysg below.

U o Tysig
El U — Ty
T U

Y :(a:U)—(Ela—-U)—-U

ld :Ela— Ela—U

I (Ix: Tyy) = (k= U) = U

II :(a:U)— (Ela — Tysg) — Tysig
I (Ix: Tyg) = (Ix = Tysig) — Tysig
Y (A Tysig) = (A = Tysig) = Tysig
T Tysig

Notation 21. We will use the — =Bt — and — —®* — notations in the follow-
ing for II®* and II®¢, but additionally we use — —" — for internal products, to

disambiguate them from outer functions in 2LTT.

We revisit now the flewf semantics in the new setting. The goal is to produce
output by the signature-based semantics, such that if we use the original —4 in-

terpretation on that, we get results that are equivalent to what we get from the
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A
sig
signature-based semantics, then we get (F;‘i‘g)A tt : Set, which should be equivalent
to ' : Set.

In this section, we only describe the signature-based semantics, and we do not

direct semantics. For the simplest example, for I' : Con, we get I'Z, : Ty e from the

formally check the round-trip property. The round-tripping seems very plausible
though, since as we will see, the signature-based semantics is exactly the same as
the direct semantics, modulo the change of universes and type formers.

We look at key parts of the model. In each case, we generally only check that
we have sufficient type formers. We again write components of the model in bold

font.

Base cwf

Contexts in the model are still flewfs, but now Con, Sub, Ty and Tm in flewfs all

return in Tyge. Hence, assuming I' : Con, we have

Conr : Tysig

Subr : Conp — Conp — Tygie

Tyr : Conp — Ty

Tmp @ (I': Conp) — Typ I' = Ty

We specify all equations using outer equality (since the Id types in Ty, are exten-
sional, this makes no difference). Similarly, components of A : Ty I return in Tysjg.
Substitutions and terms in the model are unchanged, they are weak morphisms
and sections respectively. For e : Con, we use T : Tygg to define the components.
Likewise, we use the ¥ type in Tys, to define — > .

If we write Tmgg explicitly, we have e.g. Subr : Tmgz Conp — Tmge Conp —
Tysig. Thus, we may use the simplified interpretation of functions with inner do-
mains, from Section 3.4.3, and if we interpret the type of Subr at the empty context

in the presheaf model, we get Ty (e >|Conp|tt > |Conp|tt).

Universe

U : TyT is defined as U : Con, and we take the constant displayed flcwf of the
definition. Now, we have U : Con as the flewf of types in U : Tygg.

Cony =U
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SubyI'A:=T =" EIA
Ty,T =T -="U
Tmyl A ;= (v:T) =™ El(A¥y)
ey, — by — and Idy are defined using the type formers in U. As before, Ky is

defined simply as a constant function. In Ela : Ty ', we use the Id type in Ty

in morphisms and sections:

Congio I’ =El(al)
SubgTAg :=ld(acT) A
Ty, A =El(a Al)
Tmg At =1d(at,I)A

Type formers in U

For T, ¥ and Id in U, we use T, X and Id in U : Ty, in a straightforward way.

For TI®* Ix b, we have the following:
Con(next Ix b) £ = (Z . |X) —>eXt (bZ) E
Let us look at morphisms:

Sub(rrest 1oy @ ¢ (i 1 Ix) = (bi) L) =™ EI((i : Ix) = (bi) A)
Sub(rex 1xp) @ := A AT (bi) o (1)

Here, we map an infinitary function to another one, which checks out just fine,
since —" allows such mapping. We have just enough higher-order functions to

complete this definition. The rest of TI®* Ix b follows evidently.
II, I1%¢, T, 2
In ITa B, we use inductive functions in components:

Conmam) L (y:al) =" Cong (T, )
Subam T Ag:=(y:al) =" Subg (') (A(ag?)) (g, refl)

In IT%¢ we use »F% In T and X, we use T and ¥ in Tygg. This concludes the

definition of the signature-based semantics.
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Definition 65 (Signature-based AMDS interpretation). For some I' : Con,
we define the following by interpreting I' in the signature-based flcwf model, then
interpreting the result in the presheaf model of 2LTT.

ra :Tye

Lo Ty (o0 (70 : Ty) & (1 T4y)
Lot Ty (o> (v : T))

Do s Ty (o> (7: TGg) > (V7 1 TR,))

Backporting to finitary signatures

It is apparent from the previous section that the signature-based full flewf model
requires at least T, ¥ and Id in U: in the definition of U in the model these are
needed to define the family structure and the finite limit structure.

Hence, if we want to only support structure in Ty, corresponding to a theory
of finitary signatures, we need to drop all semantic components which rely on the
missing type formers. We have seen this kind of trimmed semantics in Section
4.3.2. In particular, we still get a category of algebras for each signature, since
that can be modeled without T, ¥ and Id.

Application: colimits

The signature-based semantics is often helpful when we want to construct new
signatures from old ones. We give an example application, in the construction of
colimits.

We would like to use left adjoints of substitutions to build colimits in cate-
gories of algebras. For this, it is enough to build indexed coproducts and binary
coequalizers.

For some I' : Con, we get I, : Tye. For convenience we shall work with

FA

tos

the category of I'-algebras, by taking the left adjoint of the following diagonal

in the following, instead of I'. First, we construct Ix-indexed coproducts in

substitution:

diag : Sub (o> (v : T2 ) (e (f : (Ix =B TA)))

tos

diag := (f — X\*i.7)
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For coequalizers,we again take the left adjoint of a diagonal substitution, but here

we need to rely on internal morphisms in the signature:

diag : Sub (et> (7 : tOS))
(o0 (70 : Tioe) > (71 Tits)
> (f : Thos[10 = Y0, 11— M)
> (g : Tiaslvo = 70, 11 = 7))
diag == (Yo =7, 11 = 7, [ idis[y = 9], g = idees[y = 7))

Above, we use idis : Tm (o> (v : TA)) (TM [vo + 7, 71 + 7]), which also comes
from the signature-based semantics.

Of course, if we want to be fully precise, we need to show that what we get
is equivalent to coproducts and coequalizers in the external sense. For this, we

would need the round-trip property of the signature-based semantics.

5.5 Discussion of Semantics

Iso-fibrancy as a weak structure identity principle

The flewfs of algebras that we get from the infinitary semantics are exactly the
same as in the finitary case. However, semantic types are a bit more interesting.
The iso-fibrancy of types can be understood as a weaker version of the structure
wdentity principle in homotopy type theory.

The structure identity principle says that isomorphism of algebras is equivalent
to equality of algebras. This is the same as saying that categories of algebras are
univalent [AKS15]. Assuming a signature I' and algebras v ~ +/, we have v = +/.
This equality is respected by every construction in HoTT, which implies that for
any HoTT type family F : T4 — Type, we have a function F'y — F /.

We get a similar but weaker statement from the infinitary semantics: for o :
v ~ 7' and some ToS type A : Ty, we have a function coec : A%y — A4/
We also have cohoa : o ~, coeo a for some o : A*~. So we can transport over
isomorphisms, but not all metatheoretic families can be transported, only those
which arise as ToS types.

Of course, we can transport over multiple types, or telescopes of types too,
by iterated transport. For instance, given A : Ty, B : Ty(I'> A), a : A%~y
and B : B4 (v, a), we can transport « first, then transport 8 by (o, coho ).
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Alternatively, if we have large ¥ typesin ToS,as ¥ : (A : TyT') — Ty (I'>A) — Tyl

that makes iterated transport superfluous.

Variations of semantics

First, unlike in the finitary case, we have no opportunity to minimize assumptions
on the inner theory. Already when we compute algebras, we need inner II for
infinitary functions, inner T for T, inner ¥ for ¥ and inner — = — for Id. Note
though that we still get semantics in any LCCC (locally cartesian closed category),
since we can build a cwf with the required type formers from any LCCC [CD14].

Second: can we add the “large” equality type, which includes sort equations,
back to infinitary signatures? We dropped sort equations in this chapter because
they are clearly not isofibrant. We can add them back into the mix though, at
the price of dropping components from the semantics of signatures. The reason
for having isofibrant types is that type formers in U preserve e and —>— only up
to isomorphism. If we drop all semantic components which depend on e and —>—,
we can drop isofibrancy too from the model, and everything works. In this case,
we still get a category of algebras, plus a notion of induction, but we cannot show
that initiality is equivalent to induction, as the proof of Theorem 1 depends on

—D—.

Model Constructions

In this chapter we gain some expressive power in defining model constructions
using substitutions or terms. For starters, the construction of categories from

monoids works now:

Example 30. Let us have MonoidSig as the signature for monoids, with M : U as
the carrier set, —-— : M — M — EIM as multiplication and ¢ : EIM as identity the
element. We define o : Sub MonoidSig CatSig to contain Obj := T, Hom := \__. M,

idi:=eand —o— = ——.

Many constructions in the literature which have been dubbed syntactic models
[BPT17] or syntactic translations can be defined now in the ToS, for the following

reasons.

e Syntactic translations usually do not rely on models being actually syntactic:

they do not use induction on target theory syntax. A rare counterexample
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is our construction of recursors and eliminators for term models. These
are perhaps syntactic in the sense that they prominently involve the syntax
of some type theory, and they construct recursor/eliminator functions by

induction on terms.

e Syntactic translations rarely if ever involve higher-order constructions. Such
would be interpreting Con with (Con — Con) — Con, for a contrived exam-

ple.

The gluing construction in Example 21 is already a fairly general example that
only requires the finitary ToS to define. That construction is more in an “indexed”

style, but now we can also do constructions in a more “fibered” style.

Example 31. We may consider a unary parametricity translation in the style of
Bernardy, Jansson, and Paterson [BJP10], which makes use of the small -type in
the theory of signature. We assume TT : Ty e as the signature for the theory, and
TT? : Ty(e > (M : TT)) as the signature for displayed models. The translation
can be typed as Tm (e (M : TT)) TT?: we assume a model of the theory, and
build a displayed model over the same theory. Informally, when M is initial, we

get a translation which doubles each context:
[C>(a: A =[] (a: A)>(a” : [A] a)

Formally, however, this is not well-typed because A lives in T', not in [I']. Hence,
in the definition of contexts in the displayed model, we also include a substitution
which projects out the “base” parts of contexts. This can be used to weaken types

in base contexts to total contexts.

Con : Conyy — U
ConT := X (I : Conyy) (proj : Suby, I'T)

This requires the small >-type in ToS. It is possible to rephrase the construction
without type formers in U; again, Example 21 has unary parametricity as a special
case. However, the fibered version has the advantage that contexts are translated
to contexts, types to types, and terms to terms, which makes it more convenient if
we actually want to implement it as a program translation. In contrast, the gluing

definition of unary parametricity maps contexts to types.
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5.6 Term Algebras

We adapt now the previous term algebra construction to the infinitary case. We
again switch to the ETT setup with cumulative universes. We assume Section 4.4.1
without any change. Also, we adapt 4.4.2 to infinitary signatures and semantics.
All definitions are the same, the only change is that the M, ; model is now the

isofibrant flcwf model, and we have the infinitary ToS.

5.6.1 Term Algebra Construction

The term algebra construction changes significantly. The reason is the following.
In the finitary case, the key property was that “small types evaluated in the term
model are sets of terms”. Formally, we had for a : TmQU that o (QTid) =
TmQ (Ela). This is now weakened to an isomorphism, i.e. ¢ (Q7id) ~ Tm Q (El a).

This is again necessary because of the closure of U under type formers. For
example, T4 (Q7id) = T, and Tm Q (EI T) is merely isomorphic to T. We assume

€2 : Sig; for some j level, and define ~T by induction on syn;.

(v:SubQrI') — T4

o:SubT A)(v:SubQT) = AT (0 ov) ~ o (I'Tv)
(v:SubQTD) — TmQ(A[]) — A (T v)

S(t:TmLA) (v:SubQT) — AT v (t[y]) g t* (T v)

In short, interpretations of substitutions and terms are weakened to isomorphisms.
By ~4 we mean a displayed isomorphism of objects in the semantic A type (which
is an flewf isofibration); recall Definition 60. The isomorphism is “vertical” since
it lies over id.

The interpretation of the cwf is the same as before, but like in the isofibrant se-
mantics, we have to use explicit coe instead of silently transporting over equalities.
In the interpretations of substitutions and terms, we have to explicitly compose
isomorphisms and sometimes lift them using coh. We give some examples. The

interpretation of context formers is the same as before:

7 = tt
oA (v, t) = ([TTv, ATvit)
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Type substitution with ¢ : SubT" A is interpreted as coercion:
(Alo])T : (v : SubQT) (¢t : TmQ (Alo][v]) — A (6 (TT v))
(Alo])T vt :=coe (o' v) (AT (0 ov)t)

Composition of ¢ : SubA = and § : SubT" A is the following:

(000)": (v:SubQT) = AT (606 ov) ~ o (64 (T v))
(cod) vi=cM (" v)ooT (Jov)
Above, we have
v Z0 (fov) =04 (I v)
M (6T v) ot (EN (dov)) = o (5" (I v))
ol (§ov): AT (godov)~c? (ET (§o0v))
Hence, the type of the composition in the definition checks out. We make use of
the fact that o sends an isomorphism in I' to an isomorphism in A.

Substitution extension is a somewhat more complicated case. We want to
interpret the extension of o : SubI' A with ¢ : TmI' (A[o]):

(o, )7 : (v:SubQT) = (A>A)T ((0, t) ov) =~ (o, ) (I v)

The goal is an isomorphism in the semantic I'> A category, i.e. the total category
of A. Every isomorphism in I'> A arises as packing together a I' isomorphism and

a displayed A isomorphism over it. We can compute the type further:
(o, )7 : (v:SubQT) = (AT (6 ov), AT (0 ov) (t[v])) =~ (¢ (TT v), t* (I v))

We can exhibit o7 v : AT (6 ov) ~ ¢ (I'"v) as the base component of the goal
isomorphism. Now we need a displayed isomorphism over it. Following the pattern,
we may try t7 v:

tTv (Alo])T v (t]) ~ig t2 (T v)

Computing the type:
tT'v:coe (6T v) (AT (o o v) (t[V])) ~ig t* (T 1)

So this is not quite what is needed; we want a displayed iso over ¢’ v, but we have

something over id. We can fix this using coh:

coh (o7 1) (A" (o0 ) (tv])) : A” (00 v) (H[1]) =y, coe (7 v) (A" (00 v) (t]V]))



144 5.6. TERM ALGEBRAS

The composition of t7 v and the above now checks out:
(o, ) v = (6" v, t" vocoh (ol v) (AT (o ov) (t[V])))

We omit the rest of the cwf interpretation. It should be apparent that explicit
coe and coh-handling is fairly technical. We note though that in a proof assistant,
the finitary and infinitary term model constructions would be of similar difficulty,
because there we cannot rely on equality reflection and implicit transports to
magically tidy up the formalization. In fact, even in the finitary case it would be
a good idea to structure the formalization around coercions and coherences.

The high-level explanation for why the weakened constructions continue to
work, is the same as what we gave in the section on iso-fibrant semantics: we do
nothing which would violate stability under isomorphisms; additionally, because
our isofibrations are split, coercion and coherence compute strictly on identities
and compositions, which ensures that conversion equations in the syntax are re-
spected. For example, functoriality of type substitution relies on coe computation

on identity and composition.

Universe

The universe is interpreted as follows.

U": (v:SubQT') - TmQU — Set;,
U'va:= TmQ(Ela)

(Ela)” : (v:SubQT)(t: TmQ(El(a[v])) = a®* (T v)
(Ela)" vt := (a' v)t

In the interpretation of El, note that
a’v: TmQ(El(a[v])) ~ig a® (T'v)

But this is an isomorphism in the semantic U, which is the category of sets in
Set; 1. So coercion along a” v is simply function application, and we are justified
in writing (a® v)t.

For each type former in U, we have to exhibit an isomorphism of sets in the

interpretation.
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T,

We need
TT: (v :SubQT) = UT v (T[]) ~ig T[T )

The result type computes to Tm 2 (EI T) ~ T, which is evident. For ¥, we have

to show
TmQ (EL(Z (a[v]) (bl op, q)))) =~ (o : a® (T ) x b* (T v, @)
This follows from the induction hypotheses a’ and b?, which establish the first

and second components of the desired isomorphism.

Identity

For the identity type, we need

TmQ (El(Id (t[v]) (u[v])) ~ (t* (TTv) = u* (T )

T

This follows from t* v, u” v and the specifying isomorphism of Id.

Small external products

This function type follows the same pattern. We define the isomorphism below

using induction hypotheses and the specifying isomorphism of I1®¢.

Tm Q (EI(IT® Iz (Xi. (bi)[V])) =~ ((i : Iz) — (bi)* (Tv))

Internal products

Inductive functions are interpreted using transport along a® v : Tm Q (El (a[v])) ~

at (TTv):

(MMaB)" : (v:SubQT)(t: TmQ (1L (al]) (Blvop, q])))
— (a:a®(ITv)) = BA(TTv, a)

MaB)'vt:=Xa.B(v, (' v) 1 a)(t((a'v) " a))

External products are interpreted the same way as in the finitary case.
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5.6.2 Eliminator Construction

We only present the eliminator construction in the following, since (unique) recur-
sors are derivable from this.

Compared to the finitary case, the eliminator construction does not change
as much as the term algebra construction. The reason is that although we have
weakened strict algebra equality to isomorphism, in the current construction we
only have to show equalities of substitutions and terms, which we do not need to
weaken (and they cannot be sensibly weakened anyway).

We assume j and k such that j+1 < k, and also Q2 : Sig; and w” : QF (Q7id).

D

Hence, w” is a displayed 2-algebra over the term algebra, and we aim to construct

its section. Note that we lift Q"'id : Q7 to level k by cumulativity. We define —*

by induction on syn;.

( (v:SubQTI) — T (4 (QTid)) (vP wP)
(0 :SubT' A)(v: SubQT) — AP (g ov) =0 (I'F 1)
“E(ACTYyT) (v:SubQD)(t: TmQ(A[Y])) — A% (1 (Q7id)) (1P wP) (T v)
S(t:TmLA) (v:SubQT) — AF v (t[v]) =t° (T'F v)

This is so far exactly the same as in Section 4.4.5. The subsequent changes arise

from the need to transport along —7 in definitions.

Universe

For the universe, we need
UF: (v :SubQT)(a: TmQU) = (a:a? (Q7id) = o’ wP a
Since we only have a”id : a? (Q7id) ~ Tm Q (Ela), the definition becomes
UPvat:= (a’idt)” WP
That this is well-typed, follows from

(@"id)t)"id :t=((a”id)t)* (Q7id)
((a”id) )P WP : a? WP (((a”id) t)* (QT id))

For El, we need to show

(Ela)? : (v :SubQD)(t: TmQ(El(a[v])) — o (TFv) (t* (QTid)) = tP WP
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We have

tid : (alr])Tidt = 4 (QF id)
Moreover

a?v:UP v (a[v]) =ad® (TFv)
Hence

v (At ((alp])Tidt)P wP) = a® (PP v)
Applying both sides to ((a[v])” id)~ ¢, we have
((alv))"id (((a[v])"id) ™' £))” w” = a® (PP v) (((alv])" id) 7" ¢)

This simplifies to
tPwP =% (PP v) (((a[v])Tid) ' #)

By (a”id#)Tid : t = (aTidt)” (27 id) this becomes:
tPwP = a¥ (07 ) (((alv))" id) ™ ((a”id )" (27 id)))
Thus we have the required
tP WP =% (IF ) (Q7id)
T, X%

For T, we need
TE (v:SubQTl) - U T =T5(I'F0)

But this is clearly trivial, since T*(I'¥ v) : T — T. Considering X:
(Bab)?: (v:SubQT) = UX v (S (alv]) (blrop, q]) = (Lab)® (I'Fv)

This case is a bit tedious. The sides above are functions, so appealing to function
extensionality we apply both sides to (a, 3), where a : a (v (Q7id)) and 8 :

b4 (v (QTid), ). We also unfold some definitions:
(S (@) (bl o p, a]))T i) (0, B)P P = (a° (TFv) @, b° (TE v, refl) )
Unfolding the left side of this equation, we have

((alv)"id) ™ )? w?, (B o p, )" (id, ((a[v]))"id)™ o))" B)P ")
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Let us abbreviate ((a[v])Tid)™ o : TmQ (El (a[v])) as o:
(@, (v op, a)) (id, a)) 7' B)”w?)

Hence, we need to show component-wise equality of pairs. The equality of first

components follow from the following:
a? v UF v (a[v]) = a® (TF 1)
Unfolding definitions and applying both sides to «a, we get the equality of first
components:
odPwP =a’(TFv)a
Analogously, the equality of second components follows from

Ve (v, ') (b, &7 id) L )P wP = b5 (TE v, refl)

The right hand side is what we need, the left hand side though does not immedi-

ately match up. Hence, it remains to show that
(v, o/D"id) ™" B)P w0 = (Bl o p, )" (id, o)™ B)" w”
Thus, it suffices to show
(blv, &'])"id = (b[v o p, a])" (id, o)

This equation follows from a somewhat laborious unfolding of all involved defini-

tions. In particular, we use that for some a : TmI'U, we have
(alo)'v=a" (c"v)oa (cov)

which follows from the definition of —7.

Internal products

In IT we likewise transport along the domain isomorphism.
(ITaB)" : (v:SubQT)(t: TmQ (I (a[v]) (Blvop, q))))
— (a: TmQ(El(a[v])) = B #t* (QTid) a) (t” w” (P wP)) (T v, refl)
(MaB)!vt:= Xa. BY (v, (a[v])Tida) (t ((a[v])Tida))
This is well-typed by the following;:
af v ((ap)Tida)? wP =a® (I v)a

((a[v])Tida)Tid : o = ((a[v])Tid 2)? (2T id)
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|C|, Hext’ HExt

Id is trivial by UIP, and for II®* and II®* we again do a straightforward recursion

under the indexing function.

This concludes the definition of —¥. We again show the initiality of term alge-

bras.

Definition 66 (Eliminators). Assuming €2 : Sig;, a k level such that & > j + 1

and w? : QP (QTid), we have QF id : Q% (QT id) w? as the eliminator.
Theorem 10. Q7 id : Qfﬂ is initial when lifted to any k > 7+ 1 level.

Proof. QT id supports elimination by Definition 66, and elimination is equivalent

to initiality by Theorem 1. O]

5.7 Levitation and Bootstrapping

In this section we adapt the bootstrapping procedure from Section 4.5 to infinitary
signatures.
Bootstrapping for 2LTT semantics

If we only want to write down signatures and get their 2LTT-based semantics, a
simplified bootstrapping suffices, which is essentially the same as in Section 4.5.
We write ToS; : Set;, for the type of models where underlying sets are in Set; and
external indexing is over Ty,. We also have M; : ToS;, 5 for the flewf models where

underlying sets in algebras are in Set; and external indexing is over types in Ty,.

Definition 67. The type of bootstrap signatures is defined as follows:
BootSig := (i : Level) — (M : ToS;) — Cony,

These bootstrap signatures only allow external indexing by types in Ty,. We can

write bootstrap signatures and interpret them in M;, by applying them to M.

Bootstrapping for term algebras

Now we reuse the ETT setting from Section 4.4.2. We have ToS; ; : Set;1, ;41 for

the type of models where underlying sets are in Set; and I1®* and IT®* abstract over
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Set;. We also have M; ; : ToS(; 111 j)+1,; as the flewf models, again with underlying

sets of algebras in Set; and external indexing types in Set;.

Definition 68. The type of bootstrap signatures at level j is defined as follows.
These may contain external indexing by types in Set;.
BootSig, := (i j : Level) — (M : ToS; ;) — Cony,

Definition 69 (Signature for ToS). We define ToSSig; : BootSigj,; as the
bootstrap signature for ToS, where the described signatures may be indexed by

types in Set;. Like in Section 4.5, we use an internal notation. We present an

excerpt.
Con :U
Sub : Con — Con — U
Ty :Con—U

Tm :(I':Con) > TyI' - U

SigU : {I' : Con} — EI(TyI)
SigEl : {I" : Con} — TmI'SigU — EI(TyI)
1% : {T": Con}(A : Set;) =5 (A —»®* Tm T SiglU) — EI(TmT SigV)

Now the interpretation of ToSSig; in M, ;,; yields the flewf where objects are
elements of ToS; ;. Note the level bump: ToSSig; is in BootSigj,1, so we expend
one level at each round of self-description. We get the notion of ToS-induction
from M, ;iq, and we have ToS;; < ToS;;1; (by definition of ToS and the rules
of subtyping), which allows us to specify what it means for a model to support
elimination into any universe. Thus we recover all concepts that are used in the

term algebra and eliminator constructions.

5.8 Related Work

This chapter is based on the publication “Large and Infinitary Quotient Inductive-
Inductive Types” [KK20b]. We make the following changes:

e We use 2LTT for the flewf semantics, while the paper only used the cumu-
lative E'T'T setting.
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e We add the construction of left adjoints and the signature-based semantics
in Sections 5.3-5.4.

e We add small T and ¥ to the ToS, and also their large counterparts in
Sections 5.3-5.4.

Recall that we show that arbitrary substitutions have left adjoints. Moeneclaey
[Moe21] describes sufficient conditions to have right adjoints as well: given ¢ :
Tm(e>T5)TL, [id, t], and then the forgetful
substitution from this context to «>T, has a right adjoint. The construction that

we have the context o> T4 > T

tos tos

we gave in Example 31 was given with such a ¢ term as well.

Fiore, Pitts and Steenkamp investigated infinitary QITs in [FPS20] and [FPS21].
They introduced two signatures for QW and QWI types, which generalize W-types
and indexed W-types respectively. In the latter work, they show that these types
can be constructed using the WISC axiom (weakly initial sets of covers).

Essentially algebraic theories generalize to the infinitary cases in a straightfor-
ward way [AAR'94].

Specific examples of infinitary QIITs where introduced in [Unil3], as QIITs
for Cauchy real numbers, surreal numbers, and cumulative set hierarchies. In

[ADK17], a partiality monad is specified as an infinitary QIITSs.
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Higher Inductive-Inductive Signatures

So far we only considered semantics of signatures where equality constructors are
interpreted as proof-irrelevant equalities, i.e. those satisfying UIP. This inspires the
naming of quotient inductive-inductive signatures. In contrast, higher inductive-
inductive signatures are characterized by having possibly proof-relevant and iter-
ated equalities in algebras. The natural setting of HIITs is homotopy type theory
(HoTT) [Unil3], where higher equalities can be manipulated and constructed in
non-trivial ways. We might think of HIITs as generalizations of QIITSs, or alter-
natively, view QIITs as set-truncated HIITs.

The theory of HII signatures is fairly similar to the theory of infinitary QII
signatures. The main difference is that the internal Id type does not support
equality reflection, nor UIP. In fact, infinitary QII signatures already allow iterated
Id, and most HIITs that occur in the literature can be already expressed using
QII signatures. In contrast, the semantics of signatures changes markedly: the
semantic inner theory is now intensional, and Id is interpreted as intensional inner
equality. This may not seem that dramatic, but note that so far we have made
very heavy use of UIP and inner equality reflection in the semantics, and now these
are not available.

The more general semantics introduces significant complications. As a result,
in the following we shall restrict ourselves to the AMDS fragment of the semantics.
This is sufficient to compute what we mean by induction and initiality (which has
been called “homotopy initiality” in the context of HoTT [Soj15]).

Why do not we go further? The main reason is that the natural semantics is
actually in (w, 1)-categories: we want (w, 1)-categories of algebras. This requires

a different approach and toolset. In particular, in [KK20a, Section 9] we gave an

152
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example that a naive attempt to extend the AMDS semantics of signatures with
the notion of identity morphisms already fails. The author of this thesis is not
versed enough in higher category theory, so we leave the exposition of the full
semantics to future work.

We do note that a higher semantics has been developed by Capriotti and Sat-
tler. See [CS20] for an abstract; the bulk of the work remains unpublished as of
now. In short, Capriotti and Sattler define the ToS in 2LTT, and also use 2LTT
to give a model where signatures are higher categories, specified as complete Segal
types. They show that categories of algebras have finite limits and that initial-
ity is equivalent to induction. Additionally, the setup yields a structure identity
principle for each signature. However, reductions to simpler type formers are not
discussed, nor possible term algebra constructions. Both of these appear to be far
more difficult than in the quotient setting, and to the author’s knowledge there

are no concrete proposals how to approach them.

The necessity of 2LTT

2LTT is firmly necessary in the specification of HII'Ts, and the ToS must live in
the outer layer. The reason is that there is no known way to sensibly internal-
ize the metatheory of type theories purely inside HoTT. This is the problem of
“HoTT eating itself” [Shuld]. Tt is also closely related to the problem of rep-
resenting semisimplicial types in HoTT. If we can construct semisimplicial types
in an embedded type theory, and interpret that into non-truncated HoT'T types,
that would indeed solve the problem. But so far it has not been solved, or proven
impossible to solve. A key original motivation for 2LTT was precisely to allow
construction of semisimplicial types [ACKS19].

We give a short summary of the problem; see [KK20a, Section 4] for more
discussion. The goal is to have a notion of model of a dependent type theory in
HoTT, such that we have a standard model where contexts are HoT'T types.

We may define the notion of model naively using types and equalities, by having
Con : U, Ty : Con — U, etc. and idl : 0 oid = 0. However, this does not yield
a well-behaved notion of syntaz. If we define the syntax as HIIT for the above
notion (i.e. the initial model), nothing forces the underlying types to be sets; the
HIIT definition freely adds a large number of non-trivial higher paths. Since the
underlying types are not sets, this syntax does not have decidable equality, by
Hedberg’s theorem [Hed98]. This is regardless of what type formers we include.
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Alternatively, we may define the notion of model as having homotopy sets for
underlying types. The corresponding HIIT will be in fact a QIIT, where every
inductive sort is set-truncated. While this is better-behaved as syntax, we do not
get a standard model. Contexts in a model cannot be arbitrary types because in
HoTT, types (of a universe) do not form a h-set. In fact, not even h-sets form a
h-set; they form a h-groupoid. So we do not get any reasonable notion of standard
interpretation.

2LTT solves this issue in the following way: the embedded syntax is an outer
QIIT, and equations in the syntax are given as strict (outer) equalities. The
standard inner type model is now possible because in that model all equations
hold strictly, up to inner definitional equality. However, this implies that we can

only define strict models; this leads to the following consideration.

Strict vs. weak signatures

We have an important choice in the semantics: homomorphisms (and sections) can
preserve structure strictly, i.e. up to outer equality, or weakly, up to inner equality.

This choice has an impact on the supported ToS features.

e With strict preservation, the semantics does not support an elimination rule
for Id. The problem is that Id is necessarily modeled as inner equality, but

we cannot eliminate from that to outer types, and strict equality is an outer

type.

e With weak preservation, we do have elimination for Id. However, the se-
mantics does not support strict fn rules in Id, 3, I1®* and II. In short, the
problem is that (Ela)™ and (Ela)® are defined as inner equality types, so
we need to use inner path induction in the semantics of eliminators. This
implies that Sn-rules also hold only up to inner paths, but not definitionally.

Thus, in the “weak” case, we may have 7 only up to internal Id.

It makes sense to develop both semantics. Weak morphisms and sections are
useful because they can be defined purely in the inner theory (or in HoTT). Strict
morphisms and sections are useful if we want to specify type formers, since type
theories usually assume strict S-rules for recursors and eliminators. In this chapter,

we specify theories of signatures and semantics for both cases.
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Metatheory

We work in 2LTT. We assume that Ty, is closed under II, 3, T and intensional
identity — = —. We assume the “based” path induction principle [Unil3, Sec-
tion 1.12.1]. Assuming A : Ty,, x : Aand P : (y : A) —» 2 =y — Ty,, we

have
Jp tParefl 5 {y: A}(p:x=y) — Pyp
JpB : Jpprrefl = pr
The following operations are defined in the standard way [Unil3, Section 2].

e Path inversion —': 2=y — y = 1.

Path composition —+—:x =y —wy=2 - x = 2.

Assuming P : A — Ty,, we have transport trp: 2 =y — Pz — Py.

Path lifting ap: (f: A= B) w»z =y — fz = fuy.

Dependent path lifting apd : (f : (x : A) - Bz) = (p : 2 = y) —
trpp(fz)=fy.

6.1 Strict Signatures

Definition 70. A model of strict ToS is the same as a model of the theory of
infinitary QII signatures, with the following change: the Id type former in U only

supports refl, but no elimination rule or reflection rule.

We assume that the syntax of ToS exists, and a signature is a context in the
syntax. We could use bootstrap signatures as well, without loss of generality, as
we will not use actual induction on signatures in the following, and we will also

not discuss fine-grained sizing or cumulativity of algebras.

Example 32. The circle is one of the simplest higher inductive types [Unil3,
Section 6.4]. The signature is the following.

st .U
base : EIS!
loop : El (Id base base)
Note that the circle signature is expressible as a QII signature, but in the QII

semantics the loop entry is made trivial by UIP.
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Non-examples

From the HoT'T book, all higher-inductive types are supported, except

e The torus [Unil3, Section 6.6], since the specification contains ld composi-

tion, which requires Id elimination.

e The “hubs-and-spokes” HITs [Unil3, Section 6.7]. This involves abstracting
over some external z : S! (a point of the circle), then referring to a ToS term
which is computed by elimination on z. This is also not permitted in our
setup because signature terms live in the outer theory of 2LT'T, and external

parameters are in Ty,.

If instead signatures and external parameters lived in the same theory (like
in our ETT setup for term algebra constructions of QIITs), this elimination
would be possible. For HIITs, we cannot do that, since the inner theory

cannot reasonably internalize the ToS.

6.1.1 Semantics

For each signature I', we wish to compute

4 . Set
M. 174 514 5 Set
P .74 = Set

% (y: T4 = TPy = Set

corresponding respectively to algebras, morphisms, displayed algebras and sec-
tions. Note that all of these return in Set. Morphisms and sections in particular
are forced to return in Set because they may contain strict equalities.

The AMDS interpretations can be found in Appendix B in a tabular manner,
together with a listing of ToS components. We discuss these in the following.

In algebras and displayed algebras there is no complication; all equations
hold in these (displayed) models strictly, and we do not use equations from induc-
tion hypotheses anywhere.

In morphisms, note that all term formers returning in El specify a strict
equation. We write refl in their definition for brevity, which is technically correct

(by equality reflection), but the definitions may involve using the strict equalities
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from induction hypotheses. TM vM : tt) = tt is trivial, but

(proj; )M 4™ = a™ 4™ ((proj; t)* 7o) = (proj; t)* 7

requires us to use

A (@AM ((projy 1) o), M (Y refl) ((projy 1) 1)) = ¢4 m

Likewise we use t* v in the equation for (proj, ).
Also note that the definition for (Id¢u)™ 4™ relies on tM and u™ for well-

typing. The goal is

(Idtw) M (Idtu)* vo — (Idtuw)d
M
~

(Idtu)M :tA’yO:uAvo—>tA70:uA71

1) = aM M (ut ),
so we rewrite the sides along tM M : @M M (t4~y) = t4 5, and uM M. The ap

Assuming p : t4v9 = u 7y, we have ap (a™ vM) p : aM M (

application must stay explicit in the definition, since inner equalities can be proof-
relevant.
We also demonstrate the failure of Id elimination. It is enough to show that Id

inversion fails. This would entail the following in the ToS:
~ 1 TmT (El(Idtu)) — TmI (El(Idut))
In the — interpretation, we would need to show

M AM rap (@ ™M) () %) = (071 1)
(M ™ rap (@ ™) (0" 70) ") M)~

We have pM A = ap (a™ vM) (p? v9) = p* 71, so we would need to show

Il
S

ap (@ ™) ((p* 70)™") = (ap (a™ M) (p* 7))~

This is not provable in 2LTT; it is false as a universal statement in the initial
model (syntax) of the inner theory. It holds in the empty context, where both
sides are necessarily equal to refl by canonicity, but not in arbitrary contexts. It
does hold as an inner equality, by induction on p* 7.

Sections are a mostly mechanical generalization of morphisms, where the
codomain depends on the domain. Note that the (Idtu)” definition is a path-

over-path, and accordingly we have apd instead of ap in (Id ¢ ).
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Definition 71. For some I" signature, notions of initiality and induction are as

follows.

Initial ~ (y: )
Inductive (v : T4) :

(v : T4) — isContr (I'M  +")

PiTPy) 5 Ty

(v

This is the same as Definition 43, except we do not have an flewf of algebras, so

do not have properties that are evident in an flewf, such as Theorems 1 and 2.

Example 33. For the circle signature S'Sig, we have the following (disregarding

the leading T components):

S'Sigh = (S : Ty,) x (base : S*) x (loop : base = base)

S!SigP (S, loop, base) =
(S S'— Ty,)
x (base” : S base)

x (loop® : trgip loop base” = base®)

SiSig® (SY, loop, base) (S'P, loop?, base?) =
(S i (s:8") = SWPs)
x (base® : S8 base = base®)

x (loop® : apd S** loop = loop®)

The computed induction principles are close to what we find in [Unil3]. The
difference is that [-rules for path constructors are strict, while in ibid. they are up
to propositional equality. One reason for choosing weak [-rules for paths is that we
have ap and apd applications on the left sides of such rules, and it is unconventional
to definitionally specify the behavior of operations which are derived from J. In
cubical type theories, path §-rules are specified in a more primitive way, so strict
computation is more organic.

Currently, we have semantics in intensional inner theories, but it would be
possible to do the same in cubical inner theories. Intensional T'T is clearly much
simpler, and has a wider variety of known models. On the other hand, cubical type
theories support strictly computing transports, so it is possible that they would
support stricter ToS S-rules in the case of the “weak” semantics. We leave this to

possible future work.
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6.2 Weak Signatures

Metatheory

On top of what we had so far in this chapter, we assume strong function exten-
stonality in the inner theory: this means that for each f, g : (a : A) — Ba, the

following function is an equivalence.

happly : (f =g) = ((a: A) = fa=ga)
happlypa :=ap(Af. fa)p

funext is obtained as the inverse of happly. This definition, unlike the simple
assumption of funext, is well-behaved in intensional settings [Unil3, Section 2.9].

Moreover, we assume two universes Uy and Uy, such that Uy < U; < Ty,. We
use this to develop semantics which is entirely in the inner theory: if algebra sorts

are in Uy, we need an U; on top of that to accommodate types of algebras.

Definition 72. A model of weak ToS consists of a base cwf (with Con, Sub,
Ty and Tm returning in Set) extended with certain type formers. We omit all
substitution rules in the following. As before, substitution rules are given with

strict equality. We list type formers below.

o A “large” identity type ID : TmI'A — TmI' A — TyI', with the following

rules:

refl: Tm' (IDtt)
J {t:TmTA}P:Ty(I'>(u:A)>(p:IDtuw)))

— Tm T (Pluwt, p s refl])

—{u: TmT A} p: TmT (IDtu)) = TmT (Plu — u, p — pl)
JG  Jbprrefl = pr

Notation 22. We may use a name binding notation in the induction motive
for J. For example, assuming A : TyI', B: Ty (' A), p: TmI'(IDtu) and
pt : TmT (BJid, t]), we may define transport along p as

J(xp.Blid, z]) ptp: TmT (B]id, u])

where x p. binds the term and path dependencies of the induction motive.
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e A universe U with decoding El.

e U is closed under a “small” identity type Id : TmI'(Ela) — TmTI (Ela) —
TmI'U, with elimination principle J targeting any type (not just types in
U!). The S-rule is specified with ID.

refl : Tm T (El (Id ¢ ¢t))
J {t:TmT (Ela)}(P:Ty(T'> (u:Ela)>(p: El(Idtu))))

— TmI (Pluw—t, p— refl])

—{u:TmI (Ela)}(p: TmIT (El(ldtu))) = TmI (Plu— u, p— p|)
JG - Tm I (ID (Jb prrefl) pr)

e U is also closed under T, X, and I1®*. All of these are specified with equiva-
lences up to ID. These are equivalences in the sense of HoTT [Unil3, Chap-
ter 4]. There are several equivalent formulations of equivalence; we pick
the bi-invertible definitions here. For T, it is enough to have a simplified

specification as T : TmI' (ID¢tt). X is specified as follows.

~— < (t:TmT (Ela)) x TmT (El (b[id, ])) — TmT (El (S ab))

proj : TmI' (El(Xab)) = (t: TmT (Ela)) x TmT (El (b]id, ¢]))
proj/ : TmT (El (X ab)) — (t: TmT (Ela)) x TmT (EI(bid, t]))
Bi = TmI(ID (proj, (¢, u))t)

B s TmT(D () (w. (EI)[d, 2]) (prois (¢, u)) r) w)

n  : TmT (ID (proj; t, proj,t)t)

We write proj;, and proj; for composing metatheoretic projections with ToS
projections. The additional proj’ component is required to get a bi-invertible
equivalence. Also note that (5 is only well-typed up to 1, so we need to use

a transport in the specification.

I (I : Ug) — (It = TmI'U) — TmT' U is specified below.

app®™* : Tm T (EI(IT®* Iz b)) —

((¢: Ir) — TmT (El(b3)))
lam®* : ((4: Iz) — TmT (El(b4)

)

t

— Tm T (EI (11 Iz b))
— Tm T (EI (II%* [z b))

i) (t1))

lam®* : ((i : Iz) — Tm T (El (bi

(i
)
)
6] : TmT (ID (app™* (lam®* ¢)
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n : Tm T (ID (lam®™* (app®tt)) )

Why have equivalences in the specification of models, would it be enough
to have isomorphisms? We choose equivalences because they yield better-
behaved models, and they do not make it any harder to construct models,
since we can always construct the required equivalences from isomorphisms

[Unil3, Chapter 4].

e Internal product type II : (a : TmI'U) — Ty (I'> Ela) — Ty, with the

specifying equivalence given up to ID, analogously as for 3 and IT®*:

(app, lam, lam’) : TmT'(ITa B) ~ Tm (I'> Ela) B

e External product type II®* : (Iz : Uy) — (Iz — TyT') — Ty T, specified as a

strict Set isomorphism:

(app®®, lam®Y) : Tm T (115 Iz B) ~ ((i : Iz) — TmT (B1i))

To give a short summary of changes compared to strict signatures:
1. Types are closed under an extra ID type former which has a strict S-rule.
2. We can eliminate from Id to proper types, but with a weak §-rule.
3. ¥ and II®* support eliminators, but with weak S-rules.

Example 34. The torus is now expressible thanks to path elimination in signa-

tures. We define —«— as path composition for Id in the evident way.

T2:U

b :EIT?

p :El(ldbb)
q :El(ldbb)

t :El(ld(p-q)(q-p))

We could also use ID instead of |d and get equivalent semantics.
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Example 35. The ID type lets us express “sort equivalences”. For example, a

signature for integers can be compactly written as follows [AS20]:

Int : U
zero : ElInt
p :IDIntlnt

We get the suc constructor by coercing along p, and predecessors by coercing

backwards.

Recall that in Chapter 5 we dropped sort equations because of their non-
fibrancy in the semantics. In contrast, there is no issue with sort equations here.
Sort equations simply become inner paths between types in the semantics; if we
assume univalence in the inner theory, such paths are equivalent to type equiv-
alences. Hence, sort equations in HIITs can be viewed as shorthands for sort
equivalences. Without sort equations, it is still possible to write equivalences in

signatures, using any of the standard definitions [Unil3, Chapter 4].

6.2.1 Semantics

We do not repeat the tables for the strict ToS semantics in Appendix B, as much
of it remains essentially the same in the weak case. We consider the components

of the model in order, highlighting relevant changes and points of interest.

Notation 23. We may omit induction motives in tr and J in the following, as they
will often get excessively verbose. So we may write trppx : Py for p: x = y and

px @ Px, and use J prp similarly.

Cwf

A notable change here is that the entirety of the semantics is now in the inner
theory. This means that the interpretation functions of contexts and types all
return in Uy, e.g. T4 : Uy and TM : T4 — T4 — U;. Accordingly, we use type
formers in U; to interpret structure in the base cwf, e.g. T4 := T, where the T
on the right is in U;. The only change though is the move from Set to Uy, all

definitions are essentially the same.
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ID

The new ID type former is interpreted as pointwise equality of semantic terms. We

assume t, u: TmI A

(IDtu)?y =ty =uty

(IDtw)™ popr Y™ = trpy (trpo (M ™)) = ™ A4
(IDtu)” py” = trogane,oyp (7 A7) = uP AP
(IDtw)*pp”y® =trp” (J(t°%) p) = u®+°

Above, we dropped induction motives in tr and J in —™ and —*. For illustration,

the more explicit definitions are:

(IDtw)" popr v =
Az, AM 2 (1A 1)y M) D1 (tr(A;p.AM (14 70) 2 4M) DO (tM 7M)> — M 7M
(IDtu) pp”+° =
tr(xe A5 0 (ud7)99) P
(Jowp 45y (ers, ap 0y 292y (777)p) = w7

From now on, we shall generally avoid this amount of detail in motives.

refl is interpreted as pointwise refl-s:

refl _ := refl
refl™ _ .= refl
refl? _ = refl
refl® _ := refl

Let us look at J for ID now. It is helpful to temporarily consider a bundled
AMDS model instead of the four interpretation maps. Then, we have the following

equivalence up to —=—:
TmAMDs r (lDAMDS tu) ~ (t = U)

This follows from function extensionality and the characterization of equivalence
for inner ¥ [Unil3, Section 2.7]. Thus, semantic ID is the same as equality of
semantic terms. It follows that everything in the inner theory respects ID, so we

can certainly define the semantic J for ID.
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The actual definition of J involves doing induction on all paths that are available

as induction hypotheses.

UPprp)ty  =J(prty) (")

P prp) M =3I (r™ ™) (0" ) (0" 70)) (0™ M)
JPprp)?~P =3 (pr" ") (0" ) 0" +)
UPprp)®~® =307 ") 7)) (0°+°)

The strict S-rule for J is supported, as the above definition computes everywhere
when p is refl.

Universe

We have the following changes. First, the interpretations of U now return in Ug:

Ut~y  =U,

Second, in El, morphisms and sections are given by inner equality:

(Ela)™ agar Y™ = a" M ay = oy

Ela)MaaP~P =0y a=a?

Id

In this identity type, —“ and —P are pointwise equality as usual, and —* and —°

complete squares of equalities. We assume ¢, u: TmT (Ela).

(dtu)ty =ttty =uly

(Idtu)M M =X (p: thy0 = uq0). (M AM) " eap (@M M) p e AN
(Idtu)? P = X(p: thy = u ). trgo o) (£ 47) = P~

(Idtw)®+® = X(p:thy =u"v).ap (tro oy p) (19 9%) " vapd (¢ %) pru®~°

We have refl! _ := refl and refl” _:= refl. For refl™ 4™ the goal type is
(M MY MM — pef]

which is one of the groupoid laws for paths [Unil3, Section 2.1]. We have a more

dependent variant as goal type for refl” ~5:

ap(Az.x) (t74%) 71w t5 45 = refl
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This again follows from groupoid laws and the functoriality of ap.
It is still the case that Tmamps I' (Elamps (Idamps tw)) ~ (t = w) up to —=—.
Although (Idtu)™ and (Idtu)® do not express equality of ¢ and u, we do get the

component-wise equalities if we apply El. We have that
(EL(Id t u))™ popr v = (M M) eap (@™ M) po » u™ M = py)

We can rearrange the definition to make it more apparent that this is an equality
of t" yM and uM ~M | which is well-typed up to py and p.
ap (a™ M) po =+ uM M = M AM

Yo

Thus, we can again expect that J is definable for Id. However, the actual definitions
get highly technical in the —* and —* cases, as we have to repeatedly transport
along higher paths to make certain eliminations well-typed. We refer the reader
to the Agda formalization [Kov22b] for these definitions. In the —4 and —P cases,

the definitions are simple enough:

UPprp)ty = 1(prty) (")
JPprp)? 4" =3 (pr" ") (0" 7)) (07 +7)
Regarding the A-rule, note that refl™ and refl® are not defined as refl, but rather

by induction on t¥ v™ and t° +°. Therefore, if we apply J to refl, the - and —*

components do not strictly compute.

T

T is unchanged. tt" and tt° could possibly change (since El has changed, and
tt: TmI' (EI'T)), but they are still definable with refl-s.

P

Pairing and the projections change in 3; now their — and —° cases return proof-

relevant inner equalities. In pairing, we do path induction on hypotheses:
(t, w™ M= I (Irefl (£ M) (@M M)
(t, " = I (Jrefl (15 4%)) (u® 7)

In proj;, we use ap proj; on path hypotheses:

(proj; )M 4™ := ap proj, (t" +M)

(proj, t)° 4" := approj; (t°7”)
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In proj,, the definitions could be given using apd proj,, but the result type does not

immediately line up, so we can just do direct path induction.

(projo t)M M := Jrefl (tM AM)
(projy 1) v° = Jrefl (t°~%)

proj; and proj, (required by the bi-invertible specification) are defined the same

way. We do not have strict Sn-rules. For example:

(proj, (t, u))™ +* = ap proj, (J (Jrefl (£ ™)) (M ™)) 2t M

We still get (proj; (¢, u))™ M = M 4™ by path induction on t¥ 4™ and uM M
and similarly in other cases, so ¥ in the ToS does support the specifying equiva-
lence.

I—I ext

Again, the —™ and —° cases change in term formers. Application is given by

happly:
(app=€t )™ 4™ := happly (" 7M)
(app™“ti)° 7 = happly (¢°7%)
Abstraction is by funext:

(lam®* £)® 75 := funext (\i. (”)SVS>

Thus, weak fn-rules for I1%* follow from strong function extensionality.

-
We need to use explicit path induction in app™ and app®:

M M) M

J(tM" M ag) o™ where o™ i AMag = ay
J

(appt)™ (v,

(appt)® (7%, ) = (tS Sa)a’ where o :a%~%a =aP

In contrast, lam does not change. fn-rules are given by replaying the path induc-

tions on app™ and app”.
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n Ext

The interpretation of M5 is unchanged. This concludes the AMDS semantics of

weak signatures.

6.3 Discussion & Related Work

6.3.1 Evaluation

The main advantage of the signatures in the current chapter is their generality.
We cover almost every higher inductive definition in the literature, and do so in a
direct manner, with minimal encoding overhead.

It is also possible to mechanically check validity of signatures and compute
AMDS interpretations. The current author has written a Haskell program which
takes as input a weak HII signature, and outputs ADS interpretations as well-
formed Agda source code [Kov20]. The syntax is a bit more restricted than what
we have in this chapter, and the program does not compute morphisms; but it is
clear that the deficiencies would be straightforward to patch up.

On the other hand, we note that our semantics is in a minimal intensional the-
ory, a fragment of the “book” version of homotopy type theory. This setting sup-
ports neither computational univalence nor computational higher inductive types.
If our goal is to add computationally adequate HIITs to a theory (and eventually
to its implementation), the current chapter is not immediately applicable. As we
mentioned in Section 4.3.4, in a cubical setting we would need to reformulate both
signatures and semantics. However, the current work should be still helpful as a

guideline, and a provide a point of comparison and validation.

6.3.2 Related Work

This chapter is based on “A Syntax for Higher Inductive-Inductive Types” [KK18]
and “Signatures and Induction Principles for Higher Inductive-Inductive Types”
[KK20a], both by Ambrus Kaposi and the current author. The latter is an ex-
tended journal version of the former. In this chapter, we extend and refine these

sources in the following ways.

e We use 2LTT. In the papers, we instead used a custom syntactic translation:

the theory of signatures was an ad hoc mixture of the inner and outer theory,
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and the AMDS interpretations were syntactic translations targeting the inner
theory. The setup turns out to be mostly the same as here; but 2LTT brings

a lot of clarity and convenience.

e We add the strict/weak signature distinction. The papers only considered

weak signatures and semantics.

e We improve on the specification of signatures. The papers had a small Id
type with elimination only to U, not to arbitrary types. The journal version
also had a second identity type, but only for sort equations, i.e. it expressed

only equality of inhabitants of U.

The small and large identity types in this chapter are more expressive; the

weaker definitions in the paper were just oversights.

The papers also omitted eliminators of type formers in weak signatures, and
thus their 7 rules, and they did not have T or . However, this was done
mostly for the sake of brevity, as these extra features are not really used in
any HIIT signature in the literature. It makes more sense to include the

extras here, to match infinitary QII signatures as much as possible.

The homotopy type theory book [Unil3] introduced numerous higher inductive
types and developed their use cases, but it did not give a theory of signatures, nor
discussed semantics.

Sojakova [Soj15] specified a class of HITs called W-suspensions (building on W-
types), and proved the equivalence of induction and homotopy initiality, working
internally to an intensional type theory.

Lumsdaine and Shulman gave a general specification of models of type theories
supporting higher inductive types [LS]. They gave a more semantic specification
of algebras, as algebras of a cell monad, and characterized the class of models
which support initial algebras. They did not cover indexed families or induction-
induction.

Dybjer and Moeneclaey [DM18] gave signatures for class of finitary HITs with
up to 2-dimensional path constructors, and built semantics in groupoids.

Coquand, Huber and Mortberg [CHM18] specified syntax for a cubical type the-
ory which supports several HITs (sphere, torus, suspensions, truncations, pushouts)

and built semantics in cubical sets.
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Cavallo and Harper [CH19] specify HITs which support indexed families and
arbitrary higher paths, although not induction-induction. They provide semantics
in a PER (partial equivalence relation) realizability setting.

Cubical Agda [VMAZ21] is the principal proof assistant which natively supports
computational univalence and HITs. Its implementation of pattern matching,
mutual inductive definitions, termination checking and strict positivity checking
yields of a large class of higher inductive-inductive types. However, there is no com-
pact theory of signatures (valid specifications fall out from positivity /termination

checking) nor a categorical semantics.



APPENDIX A

AMDS interpretation of FQII signatures

This appendix supplements Chapter 4. It contains the AMDS interpretation for
finitary QII signatures. We omit substitution and gn-rules. We also omit the Tmg

decoding operation of two-level type theory.
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Components of ToS (without substitution and fn-rules)

Con
Sub
Ty

Tm

refl
reflect :
11
app
lam
HExt
a ppExt .

lamBP -

: Set

: Con — Con — Set

: Con — Set

:(I': Con) — TyI' — Set

: Con

:SubT e

:SubI'T

:SUbAZE — SubT'A — SubT' =

:TyA — Subl’'A — Ty T’

:TmAA— (0:Subl’A) — Tm T (Ao])
:Sub(I'> A)T

T (D> 4) (A]p])

(0 :SubT'A) — TmT (Afo]) — SubT (A A)
Tyl

:ITmI'U — Ty
:TmI'A—Tml'A — Ty

:TmT (Idtt)

Tm[l(ldtu) -t =wu

c(a: TmIT'U) > Ty(I'>Ela) —» Ty T
:TmT' (ITaB) - Tm(I'>Ela) B
:Tm(I'>Ela) B— TmI' (Ila B)
Iz Tyy) = (Ix — Ty') - Ty

TmT (I1P* Iz B) — (i : It) — TmI (B1)
((i:Iz) = Tm[(Bi)) — Tm[ (II®* Iz B)
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Algebras
—4 : Con — Set
-4 :SubT A — T — A4
A Tyl — T4 — Set
—4 :TmDA— (v:T4) = Aty
o =T
EA’)/ =tt
id? ~ =
(0od)y =0 (6)
(Do APt = (y: T4 x Aty
(Ale)ty =A% 0"y
(tlo])* =t" (0" )
p" (7, @) =
a’ (7, @) =
(0, )"y = (o7, t7)
Uty = Tyo
(Ela)? v =a’y
(Idtu)* =ty =uly
refld =refl : thy =ty

(reflect p)* .= funext (A . p?9)
(LaB)'y = (a:a’y) = BY(y, a)
(appt)* (v, @) =t va

(lamt)® =Na.t? (v, a)

(IT® Iz B) v = (i : Ir) — (Bi)y

( t
(

appPtti)iy =ty

lamBt )4~y = Ni. (ti)hy
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Morphisms

M :(I': Con) = " — I — Set

-M (0 :SubT A) = T™ yg vy — AM (6% 40) (02 1)
M S(ATYD) = Aty — A%y = T 459, — Set
M St TmTA) = (Y TM ) = AM (t2 5) (2 1) AM
M om =T

M ’yM =tt

idM ~AM =M

(o 08)MAM = oM (§M M)

(T A)M (0, ag) (11, ar) = (Y : T y9m) x AM agag 7™

(Alo)™ ag oy v = AM g ay (oM AM)

(tlo])™ 2™ =t (oM M)

p" (v, ™) ="

a" (v, ™) =a"

(0, )" M = (oMM, M AM)

U aoalfyM =ag— a1

(Ela)™ ag oy =d"YMay=ay

(Idt u)™ pop v = tMAM = M M

refl™ M = refl : tM M = M M

reflect p)™ .= funext (A M. p™ A M)

MaB)Mtyt, v = (a:aty) = BM (tga) (t, (a4 a)) (vM, refl)

M

(M My =t Moy where o™ :a M oap = oy

(
(
(appt)™ a

(lam )M =Xa.tM (M refl) where refl : a™ M a = M«
(TT5* I B)M tot1 yM = (i: Ir) — (B)M (tgi) (t i)y

(

(

app=t )M M =

lam®t )M A M = (ti)MAM
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Displayed algebras

:(I': Con) — I'* — Set

(0 :SubT' A) = TPy — AP (6 7)
S(A:TyD) = A%y - TPy — Set

St TmTA) = (AP TP y) = AP (4 4) AP

tD’}/D = UD’YD

tD DEtD D

g v
.= funext (Ay”. p"” 7P)

refl :
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Sections

:(I': Con) = (y: ) = T4y — Set

(0 :SubT A) = T y4P — A% (64 4) (6P +P)
S(A:TYD) = Aty — AP AP 5 T~ 4P 5 Set
C(t:TmTA) = (v T5y4P) = A (#4y) (P 4P) ~®

tS SEtS S

f‘}/

v
= funext (A ~°. p” %)

= (a:aty) = B (ta) (tP (a® v° ) (7, refl)

refl :

=t77"a where o’ :a°7y a=al

=Ma.t (77 refl) where refl:a” v a=a"7"a
= (i: Ir) — (B1) (i) (tP i) v°

=t59%

= (ti)%°
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AMDS interpretation of strict HII signatures

This appendix supplements Chapter 6. It contains the AMDS interpretation for
strict HII signatures. We omit substitution and fn-rules. We also omit the Tmg

decoding operation of two-level type theory.
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Components of ToS (without equations)

Con
Sub
Ty

Tm

: Set

: Con — Con — Set

: Con — Set

:(I': Con) — TyI' — Set

: Con

:Subl'e

:SubI'T

:SubAZE — SubI’ A — SubI'=E

:TyA — SubT’' A — Ty T’

:TmAA— (0:SubT"A) — TmT (A[o])
:Sub(I'> A)T

T (s 4) (Afp])

:(0:SubT"A) — TmTI' (Afo]) — SubT (A A)
Tyl

:TmIT'U — Ty

:TmI'U

. TmT (EIT)

c(a: TmIT'U) > Tm(I'>Ela)U — TmI'U
:TmI (EI(Xab)) - TmI (Ela)

L (t: TmT (EI(Sab))) — TmT (I (b]id, proj, ¢]))
:(t: TmI (Ela)) — TmT (EI(b]id, t])) — TmT (El (X ab))
: TmI'(Ela) - TmI'(Ela) - TmI'U

. TmT (EI(Idt1))

Iz : Tyy) » (Ix - TmIT'U) - TmI'U

: Tm T (EN(IT® [z b)) — (i : Ix) — TmT (El(b4))
(i : Ir) — TmT (EI (bi))) — TmT (EI (IT [z b))
c(a: TmIT'U) > Ty(I'>Ela) —» Ty T

:TmT (ITaB) - Tm (I'>Ela) B
:Tm(I'>Ela) B— TmI' (Ila B)

Iz : Tyy) = (Ix —» Ty') - Ty
:TmT (I% [z B) — (i : Izr) — TmT (B1)

((i: Ir) = TmT (Bi)) = Tm (11" Iz B)
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Algebras

A : Con — Set

—A :SubTA T4 5 A4
A : Ty — ' — Set
A :TmD A — (7:T4) = Aty
o =T

6A7 =1t

idt =

(cod)y =0 (6"

(T> A4 = (y:T4) x Aty
(Alo)ty =A%)

(o)~ =1" (o)

p* (7, @) =

a’ (v, ) =a

(0, 1)y (0%, t"7)

Uty =Ty,

(Ela)"~ a’y

T4y =T,

tt = tt,

(Zab)ty = (azaty) o0t (y, a)
(proj t)*y = proj; (t* )

(projy )%y = proj, (t47)

(t, u)ty = (t"y, uty)
(Idtu)? =ty =uly

refl ~ =refl : thy =ty

M [z b)y = (i: Ir) — (bi)ry
app®™tti)iy =ty

lam®t )4~ = Ni. (ti)hy

ITaB)*y = (a:a’y) = B4 (v, a)
lamt)* v =Aa.t? (v, a)

% Iz B)A~ .= (i : Ir) — (Bi)"y

app™tti)iy =ty
lamBt )4y = i (L) y

(
(
(
(
(appt)* (7, a) =t va
(
(
(
(
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Morphisms

M :(I': Con) — I'* — I — Set

M (0 :SubT A) = T™ vy vy — AM (62 40) (62 )
-M (A TyT) = A%y — A%y — TM gy — Set
M Dt TmTA) = (WM T g ) = AM (#%5) (¢4 ) 4™
M om =T

eM ’yM =tt

idM M = M

(00 a)M M = oM (M AM)

(C> M (0, a0) (1, ar) := (P T o m) x AM agar 7™

(Ale)™ ag oy v =AM ag oy (eM AM)

(tlo])™ 4™ =t (oM M)

p* (M, @) =M

g (7, ™) = oM

(o, )M M = (oM M M M)

UM ag ay VM = ag — ap

(Ela) ag ay M =d" Moy =y

TM M = At

ttM A M = refl

(B ab)M~M = Ma, B). (™M a, b (vM refl) B)

(proj, t)M M = refl

(proj, t)™M M = refl

(t, u)M M = refl

(Idtu)™ ™ =A(p:thy =ut ). ap (M AM)p

refl™ 4M = refl

(I1%* Iz )M M = Mti. (b)) M AM (t4)

(app®*t )M M = refl

(lam®t )M ~AM = refl

(IMaB)Mtyt, v = (a:aty) = BM (tga) (t (a4 a)) (vM, refl)
(appt)™ (M, ™M) =t Moy where oM :a” Moy = oy

(lam )™ M =Xa.tM (M refl) where refl : a™ M a = a M«
(115 Ir BYM to t, M = (i: Ir) — (B)M (tgi) (t i)y

(app® ¢ §)M M = (M M

(

lam®t )M M = (ti)M M
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Displayed algebras

b (T : Con) — T'* — Set
-b (0 :SubT' A) = TPy — AP (6 )
b (A TyT) = A%y - TPy = Set
- Dt TmTA) = (4P TP ) = AP (11 9) "
oLy =
P fyD =1tt
id? P _ D
(God)PP = oP (5717
CeA)P (y,0) =(07:TPy) x AP ay
(Alo)?ar? = APa(0”47)
(t[o])” ~" =t (0" 7")
p” (7", a?) ="
a” (77, a?) =a”
(0, )7 A" (0”47, tP4P)
U? a~P =a— Ty,
(Ela)? t 4P a” vyt
TP AP =X_T,
tt? AP = tt,
(Zab)P~” = A, B). (@7 a4 a) %o bP (7", aP) B
(proj; )? 4" = proj; (17 ")
(proj, )7 ~7 = proj, (t747)
(t, u)? 7" = (14", uP47)
(Idtu)” y" =A(p oty =uty) treo oy p (7 4P) = uP 4P
refl” ~P = refl : tP 4P =P AP
(M I b)P ~P = At (i : In) — (bi)P AP (t4)
(app™t ti)P AP =P AP
(lam®t )P AP = i ()P AP
(ITa B)P toP ={a:a*y}(a? P yPa) = BP (ta) (P, oP)
(appt)” ( o) =tP4P P
(lam )P ~ =Ma}aP tP (7P, aP)
(IT5* I B)P ¢ = (i: Ir) = (Bi)P (ti)~”
(app® ¢ )7 ,YD =P
(

lam®® £)P ~ =M. (ti)P AP
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Sections

[':Con) — (y: ) = Ty — Set

0:SubT A) = T9y4P = A% (6 9) (6P 7P)

H
H(ATYTD) = (a: A%y) = AP ay® = Ty 97 = Set
(t:TmEA) = (79 T8y P) = A% (1) (¢ 47) 7

=9 (US 75)

el
= =
D [¢]
- ==

Il
=
0]
juma)

=A(p:tty =ut).apd (a® %) p

refl
= Mt (bi)% % (i)

refl

= refl

= (a:ay) = BY(ta

=5

= Aa.t” (7, refl)  where refl: a® S a=a~" a

7o where «

S

) (7 (% 7° @) (7, refl)

a’Ya=a

= (i: Ir) — (B1)” (i) (tP4)y°

= tsfysz'

= (ti)%~°

D
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Summary

This thesis develops the usage of certain type theories as specification languages
for algebraic theories and inductive types. We observe that the expressive power
of dependent type theories proves useful in the specification of more complicated
algebraic theories. In the thesis, we describe three type theories where each typing
context can be viewed as an algebraic signature, specifying sorts, operations and
equations. These signatures are useful in broader mathematical contexts, but we
are also concerned with potential implementation in proof assistants.

In Chapter 3, we describe a way to use two-level type theory [ACKS19] as
a metalanguage for developing semantics of algebraic signatures. This makes it
possible to work in a concise internal notation of a type theory, and at the same
time build semantics internally to arbitrary structured categories. For example,
the signature for natural number objects can be interpreted in any category with
finite products.

In Chapter 4, we describe finitary quotient inductive-inductive (FQII) signa-
tures. Most type theories themselves can be specified with FQII signatures. We
build a structured category of algebras for each signature, where equivalence of
initiality and induction can be shown. We additionally present term algebra con-
structions, constructions of left adjoint functors of signature morphisms, and we
describe a way to use self-describing signatures to minimize necessary metatheo-
retic assumptions.

In Chapter 5, we describe infinitary quotient inductive-inductive signatures.
These allow specification of infinitely branching trees as initial algebras. We adapt
the semantics from the previous chapter. We also revisit term models, left adjoints
of signature morphisms and self-description of signatures. We also describe how
to build semantics of signatures internally to the theory of signatures itself, which
yields numerous ways to build new signatures from existing ones.

In Chapter 6, we describe higher inductive-inductive signatures. These differ
from previous semantics mostly in that their intended semantics is in homotopy
type theory [Unil3], and allows higher-dimensional equalities. In this more general
setting we only consider enough semantics to compute notions of initiality and

induction for each signature.
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Summary in Hungarian - Magyar osszefoglalé

A tézis 16 célja az, hogy kidolgozza bizonyos tipuselméletek hasznalatat algebrai
elméletek és induktiv tipusok leirasdhoz. Meglatasunk szerint a fiiggd tipuselméletek
kifejezGereje nagyban elGsegiti a tomor és altalanos specifikaciékat. A tézisben
harom tipuselméletet irunk le, amelyekben a tipuskornyezeteket értelmezziik al-
gebrai szignaturaként, ami felsorolja egy algebrai elmélet szortjait, miiveleteit és
egyenleteit. A eredményeink felhasznalhatok dltalanosabb matematikai kontextus-
ban, viszont az is célunk, hogy elGsegitsiik az esetleges pratikus implementaciot
tételbizonyito-rendszerekben.

A harmadik fejezetben kifejtjiik, hogy a kétszintli tipuselmélet [ACKS19]
hogyan hasznalhaté metanyelvként az algebrai szignaturak szemantikdjahoz. Ez
lehetové teszi, hogy a szemantikat altaldnosan adjuk meg, internalisan tetszoleges
strukturalt kategoridkban, és ugyanakkor tomor tipuselméleti nyelvben dolgoz-
zunk. Példaul a természetes szam objektumok szignatiraja értelmezheto tetszoleges
olyan kategéridban, ami rendelkezik véges szorzatokkal.

A negyedik fejezetben leirjuk a véges aritasi kvéciens induktiv-induktiv
(FQII) szignaturdk elméletét. A legtobb tipuselmélet maga is lefrhaté FQIT szig-
naturaval. Minden szignatirahoz megadjuk az algebrak egy strukturalt kategoridjat,
ahol az inicialitds és az indukcio ekvivalencidja belathaté. Tovabba, bemutatunk
term algebra konstrukcidkat, bal adjungalt funktorok konstrukciéjat szignatira-
morfizmusokhoz, és bemutatjuk, hogy az 6nmaguk elméletét specifikalo szignatirak
segitségével hogyan minimalizalhaték a sziikséges metaelméleti feltételezések.

Az 6t6dik fejezetben leirjuk a végtelen aritasi kvéciens induktiv-induktiv
szignaturak elméletét, amivel végtelentil eldgazo fa strukturakat is le tudjunk
irni az iniciadlis algebrakban. Adaptéaljuk a korabbi term algebra konstrukciot,
a bal adjungalt funktorok konstrukciéjat és az onmaguk elméletét specifikdld szig-
naturak hasznalatat. Tovabba, megadjuk a szignatiurdk szemantikajat internalisan
a szignaturak elméletének a szintaxisaban, amelynek segitségével sokféleképpen
épithetlink 1j szignaturakat.

A hatodik fejezetben leirjuk a magasabb induktiv-induktiv szignatirakat.
Ezek elsésorban a szemantikdban kiilonbozek a korabbi szignaturaktoél: a metanyelv
most a homotdpia tipuselmélet [Unil3|, és lehetdség van magasabb dimenziés
egyenloségek megadasara. Itt csak annyi szemantikat adunk meg, amibdl az ini-

cialitas és indukci6 fogalmai kiszamolhaték minden szignaturahoz.
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