
110

Staged Compilation with Two-Level Type Theory∗

ANDRÁS KOVÁCS, Eötvös Loránd University, Hungary

The aim of staged compilation is to enable metaprogramming in a way such that we have guarantees about the

well-formedness of code output, and we can also mix together object-level and meta-level code in a concise and

convenient manner. In this work, we observe that two-level type theory (2LTT), a system originally devised

for the purpose of developing synthetic homotopy theory, also serves as a system for staged compilation

with dependent types. 2LTT has numerous good properties for this use case: it has a concise specification,

well-behaved model theory, and it supports a wide range of language features both at the object and the meta

level. First, we give an overview of 2LTT’s features and applications in staging. Then, we present a staging

algorithm and prove its correctness. Our algorithm is “staging-by-evaluation”, analogously to the technique of

normalization-by-evaluation, in that staging is given by the evaluation of 2LTT syntax in a semantic domain.

The staging algorithm together with its correctness constitutes a proof of strong conservativity of 2LLT over

the object theory. To our knowledge, this is the first description of staged compilation which supports full

dependent types and unrestricted staging for types.

CCS Concepts: • Theory of computation → Type theory; • Software and its engineering → Source
code generation.

Additional Key Words and Phrases: type theory, two-level type theory, staged compilation

ACM Reference Format:
András Kovács. 2022. Staged Compilation with Two-Level Type Theory. Proc. ACM Program. Lang. 6, ICFP,
Article 110 (August 2022), 30 pages. https://doi.org/10.1145/3547641

1 INTRODUCTION
The purpose of staged compilation is to write code-generating programs in a safe, ergonomic and

expressive way. It is always possible to do ad-hoc code generation, by simply manipulating strings

or syntax trees in a sufficiently expressive programming language. However, these approaches

tend to suffer from verbosity, non-reusability and lack of safety. In staged compilation, there are

certain restrictions on which metaprograms are expressible. Usually, staged systems enforce typing

discipline, prohibit arbitrary manipulation of object-level scopes, and often they also prohibit

accessing the internal structure of object expressions. On the other hand, we get guarantees about
the well-scoping or well-typing of the code output, and we are also able to use concise syntax for

embedding object-level code.

Two-level type theory, or 2LTT in short, was described in [Annenkov et al. 2019], building on

ideas from [Voevodsky 2013]. The motivation was to allow convenient metatheoretical reasoning

about a certain mathematical language (homotopy type theory), and to enable concise and modular

ways to extend the language with axioms.

∗
The author was supported by the “Application Domain Specific Highly Reliable IT Solutions” project which has been

implemented with support from the National Research, Development and Innovation Fund of Hungary, financed under the

Thematic Excellence Programme TKP2020-NKA-06 (National Challenges Subprogramme) funding scheme.

Author’s address: András Kovács, kovacsandras@inf.elte.hu, Eötvös Loránd University, Hungary, Budapest.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,

contact the owner/author(s).

© 2022 Copyright held by the owner/author(s).

2475-1421/2022/8-ART110

https://doi.org/10.1145/3547641

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

HTTPS://ORCID.ORG/0000-0002-6375-9781
https://doi.org/10.1145/3547641
https://orcid.org/0000-0002-6375-9781
https://doi.org/10.1145/3547641

110:2 András Kovács

It turns out that metamathematical convenience closely corresponds to metaprogramming

convenience: 2LTT can be directly and effectively employed in staged compilation. Moreover,

semantic ideas underlying 2LTT are also directly applicable to the theory of staging.

1.1 Overview & Contributions
• In Section 2 we present an informal syntax of two-level type theory, a dependent type theory

with support for two-stage compilation. We look at basic use cases involving inlining control,

partial evaluation and fusion optimizations. We also describe feature variations, enabling

applications in monomorphization and memory layout control.

• In Section 3, we specify the formal notion of models and syntax for the variant of 2LTT used

in this paper. We mostly work with a high-level algebraic presentation, where the syntax is

quotiented by conversion. However, we also explain how to extract functions operating on

non-quotiented syntax, by interpreting type-theoretic constructions in a setoid model.

• In Section 4, we review the standard presheaf model of 2LTT [Annenkov et al. 2019, Sec-

tion 2.5.3], which lies over the syntactic category of the object theory.We show that evaluation

in this model yields a staging algorithm for closed types and terms. We then extend staging

to open types and terms which may depend on object-level variables. We show stability of

staging, which means that staging is surjective up to conversion, and we also show that stag-

ing strictly preserves all type and term formers. Finally, we discuss efficiency and potential

practical implementations of staging.

• In Section 5 we show soundness of staging, which roughly means that the output of staging

is convertible to its input. Staging together with its stability and soundness can be viewed as

a strong conservativity theorem of 2LTT over the object theory. This means that the same

constructions can be expressed in the object theory and the object-level fragment of 2LTT, up

to conversion, and staging witnesses that meta-level constructions can be always computed

away. This strengthens the weak notion of conservativity shown in [Capriotti 2017] and

[Annenkov et al. 2019].

• In Section 6, we discuss possible semantic interpretations of intensional code analysis, i.e.

the ability to look into the structure of object-level code.

• We provide a small standalone implementation of elaboration and staging for a two-level

type theory [Kovács 2022].

• To our knowledge, this work is the first formalization and implementation of staged compila-

tion in the presence of full dependent types, with universes and large elimination. In particular,

we allow unrestricted staging for types, so that types can be computed by metaprograms at

compile time.

2 A TOUR OF TWO-LEVEL TYPE THEORY
In this section, we provide a short overview of 2LTT and its potential applications in staging.

We work in the informal syntax of a dependently typed language which resembles Agda [Agda

developers 2022]. We focus on examples and informal explanation here; the formal details will be

presented in Section 3.

Notation 1. We use the following notations throughout the paper. (𝑥 : 𝐴) → 𝐵 denotes a dependent

function type, where 𝑥 may occur in 𝐵. We use 𝜆 𝑥. 𝑡 for abstraction. A Σ-type is written as (𝑥 : 𝐴)×𝐵,
with pairing as (𝑡, 𝑢), projections as fst and snd, and we may use pattern matching notation on

pairs, e.g. as in 𝜆 (𝑥, 𝑦). 𝑡 . The unit type is ⊤ with element tt. We will also use Agda-style notation

for implicit arguments, where 𝑡 : {𝑥 : 𝐴} → 𝐵 implies that the first argument to 𝑡 is inferred by

default, and we can override this by writing a 𝑡{𝑢} application. We may also implicitly quantify

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

Staged Compilation with Two-Level Type Theory 110:3

over arguments (in the style of Idris and Haskell), for example when declaring id : 𝐴 → 𝐴 with the

assumption that 𝐴 is universally quantified.

2.1 Rules of 2LTT
2.1.1 Universes. We have universes U𝑖, 𝑗 , where 𝑖 ∈ {0, 1}, and 𝑗 ∈ N. The 𝑖 index denotes stages,
where 0 is the runtime (object-level) stage, and 1 is the compile time (meta-level) stage. The 𝑗 index

denotes universe sizes in the usual sense of type theory. We assume Russell-style universes, with

U𝑖, 𝑗 : U𝑖, 𝑗+1. However, for the sake of brevity we will usually omit the 𝑗 indices in this section, as

sizing is orthogonal to our use-cases and examples.

• U0 can be viewed as the universe of object-level or runtime types. Each closed type 𝐴 : U0 can

be staged to an actual type in the object language (the language of the staging output).

• U1 can be viewed as the universe of meta-level or static types. If we have 𝐴 : U1, then 𝐴 is

guaranteed to be only present at compile time, and will be staged away. Elements of 𝐴 are

likewise computed away.

2.1.2 Type Formers. U0 and U1 may be closed under arbitrary type formers, such as functions,

Σ-types, identity types or inductive types in general. However, all constructors and eliminators in

type formers must stay at the same stage. For example:

• Function domain and codomain types must be at the same stage.

• If we have Nat0 : U0 for the runtime type of natural numbers, we can only map from it to a

type in U0 by recursion or induction.

It is not required that we have the same type formers at both stages. We will discuss variations of

the object-level languages in Section 2.4.

2.1.3 Moving Between Stages. At this point, our system is rather limited, since there is no interaction

between the stages. We enable such interaction through the following operations. Note that none of

these operations can be expressed as functions, since function types cannot cross between stages.

• Lifting: for 𝐴 : U0, we have ⇑𝐴 : U1. From the staging point of view, ⇑𝐴 is the type of

metaprograms which compute runtime expressions of type 𝐴.

• Quoting: for𝐴 : U0 and 𝑡 : 𝐴, we have ⟨𝑡⟩ : ⇑𝐴. A quoted term ⟨𝑡⟩ represents the metaprogram

which immediately yields 𝑡 .

• Splicing: for𝐴 : U0 and 𝑡 : ⇑𝐴, we have ∼𝑡 : 𝐴. During staging, the metaprogram in the splice

is executed, and the resulting expression is inserted into the output.

Notation 2. Splicing binds stronger than any operation, including function application. For

instance, ∼𝑓 𝑥 is parsed as (∼𝑓) 𝑥 . We borrow this notation from MetaML [Taha and Sheard

2000].

• Quoting and splicing are definitional inverses, i.e. we have∼⟨𝑡⟩ = 𝑡 and ⟨∼𝑡⟩ = 𝑡 as definitional

equalities.

Informally, if we have a closed program 𝑡 : 𝐴 with 𝐴 : U0, staging means computing all

metaprograms and recursively replacing all splices in 𝑡 and𝐴with the resulting runtime expressions.

The rules of 2LTT ensure that this is possible, and we always get a splice-free object program after

staging.

Remark. Why do we use the index 0 for the runtime stage? The reason is that it is not difficult

to generalize 2LTT to multi-level type theory, by allowing to lift types from U𝑖 to U𝑖+1. In the

semantics, this can be modeled by having a 2LTT whose object theory is once again a 2LTT, and

doing this in an iterated fashion. But there must be necessarily a bottom-most object theory; hence

our stage indexing scheme. For now though, we leave the multi-level generalization to future work.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

110:4 András Kovács

Notation 3. We may disambiguate type formers at different stages by using 0 or 1 subscripts. For

example, Nat1 : U1 is distinguished from Nat0 : U0, and likewise we may write zero0 : Nat0 and so

on. For function and Σ types, the stage is usually easy to infer, so we do not annotate them. For

example, the type Nat0 → Nat0 must be at the runtime stage, since the domain and codomain

types are at that stage, and we know that the function type former stays within a single stage. We

may also omit stage annotations from 𝜆 and pairing.

2.2 Staged Programming in 2LTT
In 2LTT, we may have several different polymorphic identity functions. First, consider the usual

identity function at each stage:

id0 : (𝐴 : U0) → 𝐴 → 𝐴 id1 : (𝐴 : U1) → 𝐴 → 𝐴

id0 := 𝜆𝐴𝑥.𝑥 id1 := 𝜆𝐴𝑥.𝑥

An id0 application will simply appear in staging output as it is. In contrast, id1 can be used as

a compile-time evaluated function, because the staging operations allow us to freely apply id1
to runtime arguments. For example, id1 (⇑Bool0) ⟨true0⟩ has type ⇑Bool0, which implies that

∼(id1 (⇑Bool0) ⟨true0⟩) has type Bool0. We can stage this expression as follows:

∼(id1 (⇑Bool0) ⟨true0⟩) = ∼⟨true0⟩ = true0

There is another identity function, which computes at compile time, but which can be only used on

runtime arguments:

id⇑ : (𝐴 : ⇑U0) → ⇑∼𝐴 → ⇑∼𝐴
id⇑ := 𝜆𝐴𝑥.𝑥

Note that since𝐴 : ⇑U0, we have∼𝐴 : U0, hence ⇑∼𝐴 : U1. Also, ⇑U0 : U1, so all function domain and

codomain types in the type of id⇑ are at the same stage. Now, we may write ∼(id⇑ ⟨Bool0⟩ ⟨true0⟩)
for a term which is staged to true0. In this specific case id⇑ has no practical advantage over id1, but
in some cases we really have to quantify over ⇑U0. This brings us to the next example.

Assume List0 : U0 → U0 with nil0 : (𝐴 : U0) → List0𝐴, cons0 : (𝐴 : U0) → 𝐴 → List0𝐴 and

foldr0 : (𝐴𝐵 : U0) → (𝐴 → 𝐵 → 𝐵) → 𝐵 → List0𝐴 → 𝐵. We define a mapping function which

inlines its function argument:

map : (𝐴𝐵 : ⇑U0) → (⇑∼𝐴 → ⇑∼𝐵) → ⇑(List0 ∼𝐴) → ⇑(List0 ∼𝐵)
map := 𝜆𝐴 𝐵 𝑓 as. ⟨foldr0 ∼𝐴 (List0∼𝐵) (𝜆 𝑎 bs. cons0 ∼𝐵 ∼(𝑓 ⟨𝑎⟩) bs) (nil0 ∼𝐵) ∼𝑎𝑠⟩

This map function can be defined with quantification over ⇑U0 but not over U1, because List0
expects type parameters inU0, and there is no generic way to convert fromU1 toU0. Now, assuming

–+0 – : Nat0 → Nat0 → Nat0 and ns : List0 Nat0, we have the following staging behavior:

∼(map ⟨Nat0⟩ ⟨Nat0⟩ (𝜆 𝑛. ⟨∼𝑛 +0 10⟩) ⟨ns⟩)
= ∼⟨foldr0 ∼⟨Nat0⟩ (List0 ∼⟨Nat0⟩)

(𝜆 𝑎 bs. cons0 ∼⟨Nat0⟩ ∼⟨∼⟨𝑎⟩ +0 10⟩ bs) (nil0 ∼⟨Nat0⟩) ∼⟨ns⟩⟩
= foldr0 Nat0 (List0 Nat0) (𝜆 𝑎 𝑏𝑠. cons0 Nat0 (𝑎 +0 10) 𝑏𝑠) (nil0 Nat0) ns

By using meta-level functions and lifted types, we already have control over inlining. However,

if we want to do more complicated meta-level computation, it is convenient to use recursion or

induction on meta-level type formers. A classic example in staged compilation is the power function

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

Staged Compilation with Two-Level Type Theory 110:5

for natural numbers, which evaluates the exponent at compile time. We assume the iterator function

iter1 : {𝐴 : U1} → Nat1 → (𝐴 → 𝐴) → 𝐴 → 𝐴, and runtime multiplication as – ∗0 –.

exp : Nat1 → ⇑Nat0 → ⇑Nat0
exp := 𝜆 𝑥 𝑦. iter1 𝑥 (𝜆 𝑛. ⟨∼𝑦 ∗0 ∼𝑛⟩) ⟨1⟩

Now, ∼(exp 3 ⟨𝑛⟩) stages to 𝑛 ∗0 𝑛 ∗0 𝑛 ∗0 1 by the computation rules of iter1 and the staging

operations.

We can also stage types. Below, we use iteration to compute the type of vectors with static length,

as a nested pair type.

Vec : Nat1 → ⇑U0 → ⇑U0

Vec := 𝜆 𝑛𝐴. iter1 𝑛 (𝜆 𝐵. ⟨∼𝐴 × ∼𝐵⟩) ⟨⊤0⟩

With this definition, ∼(Vec 3 ⟨Nat0⟩) stages to Nat0 × (Nat0 × (Nat0 × ⊤0)). Now, we can use

induction on Nat1 to implement a map function. For readability, we use an Agda-style pattern

matching definition below (instead of the elimination principle).

map : (𝑛 : Nat1) → (⇑∼𝐴 → ⇑∼𝐵) → ⇑(Vec 𝑛𝐴) → ⇑(Vec 𝑛 𝐵)
map zero1 𝑓 as := ⟨tt0⟩
map (suc1 𝑛) 𝑓 as := ⟨(∼(𝑓 ⟨fst0 ∼as⟩), ∼(map𝑛 𝑓 ⟨snd0 ∼as⟩))⟩

This definition inlines the mapping function for each projected element of the vector. For instance,

staging ∼(map 2 (𝜆 𝑛. ⟨∼𝑛 +0 10⟩) ⟨ns⟩) yields (fst0 ns +0 10, (fst0 (snd0 ns) +0 10, tt0)). Sometimes,

we do not want to duplicate the code of the mapping function. In such cases, we can use let-insertion,
a common technique in staged compilation. If we bind a runtime expression to a runtime variable,

and only use that variable in subsequent staging, only the variable itself can be duplicated. One

solution is to do an ad-hoc let-insertion:

let0 𝑓 := 𝜆 𝑛. 𝑛 +0 10 in ∼(map 2 (𝜆 𝑛. ⟨𝑓 ∼𝑛⟩) ⟨ns⟩)
= let0 𝑓 := 𝜆 𝑛. 𝑛 +0 10 in (𝑓 (fst0 ns), (𝑓 (fst0 (snd0 ns)), tt0))

We include examples of more sophisticated let-insertion in the supplementary code [Kovács 2022].

More generally, we are free to use dependent types at the meta-level, so we can reproduce more

complicated staging examples. Any well-typed interpreter can be rephrased as a partial evaluator,
as long as we have sufficient type formers. For instance, we may write a partial evaluator for a

simply typed lambda calculus. We sketch the implementation in the following; the full version can

be found in the supplementary code. First, we inductively define types, contexts and terms:

Ty : U1 Con : U1 Tm : Con → Ty → U1

Then we define the interpretation functions:

EvalTy : Ty → ⇑U0

EvalCon : Con → U1

EvalTm : Tm Γ𝐴 → EvalCon Γ → ⇑∼(EvalTy𝐴)

Types are necessarily computed to runtime types, e.g. an embedded representation of the natural

number type is evaluated to ⟨Nat0⟩. Contexts are computed as follows:

EvalCon empty := ⊤1

EvalCon (extend Γ𝐴) := EvalCon Γ × (⇑∼(EvalTy𝐴))

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

110:6 András Kovács

This is an example for the usage of partially static data [Jones et al. 1993]: semantic contexts are

static lists storing runtime expressions. This allows us to completely eliminate environment lookups

in the staging output: an embedded lambda expression is staged to the corresponding lambda

expression in the object language. This is similar to the partial evaluator presented in Idris 1 [Brady

and Hammond 2010]. However, in contrast to 2LTT, Idris 1 does not provide a formal guarantee

that partial evaluation does not get stuck.

2.3 Properties of Lifting, Binding Time Improvements
We describe more generally the action of lifting on type formers. While lifting does not have defini-

tional computation rules, it does preserve negative type formers up to definitional isomorphism

[Annenkov et al. 2019, Section 2.3]:

⇑((𝑥 : 𝐴) → 𝐵 𝑥) ≃ ((𝑥 : ⇑𝐴) → ⇑ (𝐵 ∼𝑥))
⇑((𝑥 : 𝐴) × 𝐵 𝑥) ≃ ((𝑥 : ⇑𝐴) × ⇑(𝐵 ∼𝑥))

⇑⊤0 ≃ ⊤1

For function types, the preservation maps are the following:

pres→ : ⇑((𝑥 : 𝐴) → 𝐵 𝑥) → ((𝑥 : ⇑𝐴) → ⇑ (𝐵 ∼𝑥))
pres→ 𝑓 := 𝜆 𝑥. ⟨∼𝑓 ∼𝑥⟩
pres−1→ 𝑓 := ⟨𝜆 𝑥. ∼(𝑓 ⟨𝑥⟩)⟩

With this, we have that pres→ (pres−1→ 𝑓) is definitionally equal to 𝑓 , and also the other way around.

Preservation maps for Σ and ⊤ work analogously.

By rewriting a 2LTT program left-to-right along preservation maps, we perform what is termed

binding time improvement in the partial evaluation literature [Jones et al. 1993, Chapter 12]. Note

that the output of pres→ uses a meta-level 𝜆, while going the other way introduces a runtime binder.

Meta-level function types and Σ-types support more computation during staging, so in many cases

it is beneficial to use the improved forms. In some cases though we may want to use unimproved

forms, to limit the size of generated code. This is similar to what we have seen with let-insertion.

For a minimal example, consider the following unimproved version of id⇑:

id⇑ : (𝐴 : ⇑U0) → ⇑(∼𝐴 → ∼𝐴)
id⇑ := 𝜆𝐴. ⟨𝜆 𝑥. 𝑥⟩

This can be used at the runtime stage as ∼(id⇑ ⟨Bool0⟩) true0, which is staged to (𝜆 𝑥. 𝑥) true0. This
introduces a useless 𝛽-redex, so in this case the improved version is clearly preferable.

For inductive types in general we do not get full preservation, only maps in one direction. For

example, we have Bool1 → ⇑Bool0, defined as 𝜆 𝑏. if 𝑏 then ⟨true0⟩ then ⟨false0⟩. In the staging

literature, this is called “serialization” or “lifting” [Sheard and Jones 2002; Taha and Sheard 2000].

In the other direction, we can only define constant functions from ⇑Bool0 to Bool1.
The lack of elimination principles for ⇑𝐴 means that we cannot inspect the internal structure of

expressions. We will briefly discuss ways to lift this restriction in Section 6.

In particular, we have no serialization map from Nat1 → Nat1 to ⇑(Nat0 → Nat0). However,
when 𝐴 : U1 is finite, and 𝐵 : U1 can be serialized, then 𝐴 → 𝐵 can be serialized, because it is

equivalent to a finite product. For instance, Bool1 → Nat1 ≃ Nat1 × Nat1. In 2LTT, 𝐴 is called

cofibrant [Annenkov et al. 2019, Section 3.4]: this means that for each 𝐵, 𝐴 → ⇑𝐵 is equivalent to

⇑𝐶 for some 𝐶 . This is the 2LTT formalization of the so-called “trick” in partial evaluation, which

improves binding times by 𝜂-expanding functions out of finite sums [Danvy et al. 1996].

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

Staged Compilation with Two-Level Type Theory 110:7

2.3.1 Fusion. Fusion optimizations can be viewed as binding time improvement techniques for

general inductive types. The basic idea is that by lambda-encoding an inductive type, it is brought to

a form which can be binding-time improved. For instance, consider foldr-build fusion for lists [Gill

et al. 1993], which is employed in GHC Haskell. Starting from ⇑(List0𝐴), we use Böhm-Berarducci

encoding [Böhm and Berarducci 1985] under the lifting to get

⇑((𝐿 : U0) → (𝐴 → 𝐿 → 𝐿) → 𝐿 → 𝐿)
≃ ((𝐿 : ⇑𝑈0) → (⇑𝐴 → ⇑∼𝐿 → ⇑∼𝐿) → ⇑∼𝐿 → ⇑∼𝐿).

Alternatively, for stream fusion [Coutts et al. 2007], we embed List𝐴 into the coinductive colists (i.e.

the possibly infinite lists), and use a terminal lambda-encoding. The embedding into the “larger”

structure enables some staged optimizations which are otherwise not possible, such as fusion for

the zip function. However, the price we pay is that converting back to lists from colists is not

necessarily total.

We do not detail the implementation of fusion in 2LTT here; a small example can be found in the

supplementary code. In short, 2LTT is a natural setting for a wide range of fusion setups. A major

advantage of fusion in 2LTT is the formal guarantee of staging, in contrast to implementations where

compile-time computation relies on ad-hoc user annotations and general-purpose optimization

passes. For instance, fusion in GHC relies on rewrite rules and inlining annotations which have to

be carefully tuned and ordered, and it is possible to get pessimized code via failed fusion.

2.3.2 Inferring Staging Operations. We can extract a coercive subtyping system from the staging op-

erations, which can be used for inference, and in particular for automatically transporting definitions

along preservation isomorphisms. One choice is to have𝐴 ≤ ⇑𝐴, ⇑𝐴 ≤ 𝐴, a contravariant-covariant

rule for functions and a covariant rule for Σ. During bidirectional elaboration, when we need to

compare an inferred and an expected type, we can insert coercions. We implemented this feature

in our prototype. It additionally supports Agda-style implicit arguments and pattern unification, so

it can elaborate the following definition:

map : {𝐴𝐵 : ⇑U0} → (⇑𝐴 → ⇑𝐵) → ⇑(List0𝐴) → ⇑(List0 𝐵)
map := 𝜆 𝑓 as. foldr0 (𝜆 𝑎 bs. cons0 (𝑓 𝑎) bs) nil0 𝑎𝑠

We may go a bit further, and also add the coercive subtyping rule U0 ≤ U1, witnessed by ⇑. Then,
the type of map can be written as {𝐴𝐵 : ⇑U0} → (𝐴 → 𝐵) → List0𝐴 → List0 𝐵. However, here
the elaborator has to make a choice, whether to elaborate to improved or unimproved types. In this

case, the fully unimproved type would be

{𝐴𝐵 : ⇑U0} → ⇑((∼𝐴 → ∼𝐵) → List0 ∼𝐴 → List0 ∼𝐵).

It seems that improved types are a sensible default, and we can insert explicit lifting when we want

to opt for unimproved types. This is also available in our prototype.

2.4 Variations of Object-Level Languages
In the following, we consider variations on object-level languages, with a focus on applications

in downstream compilation after staging. Adding restrictions or more distinctions to the object

language can make it easier to optimize and compile.

2.4.1 Monomorphization. In this case, the object language is simply typed, so every type is known

statically. This makes it easy to assign different memory layouts to different types and generate

code accordingly for each type. Moving to 2LTT, we still want to abstract over runtime types at

compile time, so we use the following setup.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

110:8 András Kovács

• We have a jugdment, written as 𝐴 type0, for well-formed runtime types. Runtime types may

be closed under simple type formers.

• We have a type Ty
0
: U1 in lieu of the previous ⇑U0.

• For each 𝐴 type
0
, we have ⇑𝐴 : Ty

0
.

• We have quoting and splicing for types and terms. For types, we send 𝐴 type
0
to ⟨𝐴⟩ : Ty

0
.

For terms, we send 𝑡 : 𝐴 to ⟨𝑡⟩ : ⇑𝐴.
Despite the restriction to simple types at runtime, we can still write arbitrary higher-rank polymor-

phic functions in 2LTT, such as a function with type ((𝐴 : Ty
0
) → ⇑∼𝐴 → ⇑∼𝐴) → ⇑Bool0. This

function can be only applied to statically known arguments, so the polymorphism can be staged

away. The main restriction that programmers have to keep in mind is that polymorphic functions

cannot be stored inside runtime data types.

2.4.2 Memory Representation Polymorphism. This refines monomorphization, so that types are

not directly identified with memory representations, but instead representations are internalized in

2LTT as a meta-level type, and runtime types are indexed over representations.

• We have Rep : U1 as the type of memory representations. We have considerable freedom in

the specification of Rep. A simple setup may distinguish references from unboxed products,

i.e. we have Ref : Rep and Prod : Rep → Rep → Rep, and additionally we may assume any

desired primitive machine representation as a value of Rep.
• We have Russell-style U0, 𝑗 : Rep → U0, 𝑗+1 𝑟 , where 𝑟 is some chosen runtime representation

for types; usually we would mark types are erased. We leave the meta-level U1, 𝑗 hierarchy

unchanged.

• We may introduce unboxed Σ-types and primitive machine types in the runtime language.

For 𝑟 : Rep, 𝑟 ′ : Rep, 𝐴 : U0 𝑟 and 𝐵 : 𝐴 → U0 𝑟
′
, we may have (𝑥 : 𝐴) × 𝐵 𝑥 : U0 (Prod r r′).

Thus, we have type dependency, but we do not have dependency in memory representations.

Since Rep is meta-level, there is no way to abstract over it at runtime, and during staging all Rep
indices are computed to concrete canonical representations. This is a way to reconcile dependent

types with some amount of control over memory layouts. The unboxed flavor of Σ ends up with a

statically known flat memory representation, computed from the representations of the fields.

3 FORMAL SETUP
In this section we describe our approach to formalizing staging and also the extraction of algorithms

from the formalization. There is a tension here:

• On one hand, we would like to do formal work at a higher level of abstraction, in order to

avoid a deluge of technical details (for which dependent type theories are infamous).

• On the other hand, at some point we need to talk about lower-level operational aspects and

extracted algorithms.

In the following, we describe our approach to interfacing between the different levels of abstraction.

3.1 The Algebraic Setting
When defining staging and proving its soundness and stability, we work internally in a constructive

type theory, using types and terms that are quotiented by conversion. In this setting, every con-

struction respects syntactic conversion, which is very convenient technically. Here, we use standard

definitions and techniques from the categorical and algebraic metatheory of type theories, and

reuse prior results which rely on the same style of formalization. Concretely, we use categories with
families [Castellan et al. 2019] which is a commonly used specification of an explicit substitution
calculus of types and terms.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

Staged Compilation with Two-Level Type Theory 110:9

In the rest of the paper we will mostly work in this setting, and we will explicitly note when we

switch to a different metatheory. We summarize the features of this metatheory in the following.

Metatheory. The metatheory is an intensional type theory with a cumulative universe hierarchy

Set𝑖 , where 𝑖 is ordinal number such that 𝑖 ≤ 𝜔 +1. The transfinite 𝑖 levels are a convenience feature
for modeling typing contexts, where sometimes we will need universes large enough to fit types at

arbitrary finite levels. We also assume uniqueness of identity proofs and function extensionality.

We will omit transports along identity proofs in the paper, for the sake of readability. The missing

transports can be in principle recovered due to Hofmann’s conservativity result [Hofmann 1995];

see also [Winterhalter et al. 2019]. We assume Π, Σ, ⊤ and N types in all universes, and reuse

Notation 3. We also assume certain quotient inductive-inductive types, to represent the syntax of

2LTT and the object theory. We will detail these shortly in Sections 3.3 and 3.4.

3.2 Algorithm Extraction
In the algebraic setting we can only talk about properties which respect syntactic conversion.

However, themainmotivation of staged compilation is to improve performance and code abstraction,

but these notions do not respect conversion. For instance, rewriting programs along 𝛽-conversion

can improve performance. Hence, at some point we may want to “escape” from quotients.

Fortunately, our specified meta type theory can be interpreted in setoids, as most recently

explained in [Pujet and Tabareau 2022]. A setoid is a set together with an equivalence relation on

it. We interpret closed types as setoids, and dependent types as setoid fibrations. For inductive

base types such Bool or Nat, the equivalence relation is interpreted as identity. Functions are

interpreted as equivalence-preserving functions, and two functions are equivalent if they are

pointwise equivalent. A quotient type 𝐴/𝑅 is interpreted by extending the semantic notion of

equivalence for 𝐴 with the given 𝑅 relation. We will sketch the interpretation of the 2LTT syntax

(given as a quotient inductive-inductive type) in Section 3.3.3.

In particular, from 𝑓 : 𝐴/𝑅 → 𝐴/𝑅 we can extract a function which acts on the underlying set of

𝐴’s interpretation. Note that an extracted function can be only viewed as an algorithm if the setoid

interpretation is itself defined in a constructive theory, but that is the case in the cited work [Pujet

and Tabareau 2022].

Definition 3.1. Assume a closed function 𝑓 : 𝐴 → 𝐵 defined in the mentioned type theory. The

extraction of 𝑓 is the underlying function of 𝑓 ’s interpretation in the setoid model.

In other words, we can view quotients as a convenient shorthand for working with explicit

equivalence relations. We can work with quotients when we want to enforce preservation of

equivalence relations, but at any point we have the option to switch to an external view and look

at underlying sets and functions.

3.3 Models and Syntax of 2LTT
We specify the notion of model for 2LTT in this section. The syntax of 2LTT will be defined as the

initial model, as a quotient inductive-inductive type, following [Altenkirch and Kaposi 2016]. This

yields an explicit substitution calculus, quotiented by definitional equality. A major advantage of

this representation is that it only includes well-typed syntax, so we never have to talk about “raw”

types and terms.

We provide an appendix to this paper, where we present a listing of all rules and equations

of 2LTT in two styles: first, in a more traditional style with derivation rules, and also in a very

compact manner using a second-order algebraic signature.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

110:10 András Kovács

First, we define the structural scaffolding of 2LTT without type formers, mostly following

[Annenkov et al. 2019]. The specification is agnostic about the sizes of sets involved, i.e. we can

model underlying sorts using any metatheoretic Set𝑗 .

Definition 3.2. A model of basic 2LTT consists of the following.

• A categoryCwith a terminal object. We denote the set of objects asConC : Set and use capital
Greek letters starting from Γ to refer to objects. The set of morphisms is SubC : ConC →
ConC → Set, and we use 𝜎 , 𝛿 and so on to refer to morphisms. The terminal object is written

as • with unique morphism 𝜖 : SubC Γ •. We omit the C subscript if it is clear from context.

In the initial model, an element of Con is a typing context, an element of Sub is a parallel sub-
stitution, • is the empty typing context and 𝜖 is the empty list viewed as a parallel substitution.

The identity substitution id : Sub Γ Γ maps each variable to itself, and 𝜎 ◦ 𝛿 can be computed

by substituting each term in 𝜎 (which is a list of terms) with 𝛿 .

• For each 𝑖 ∈ {0, 1} and 𝑗 ∈ N, we have Ty𝑖, 𝑗 : Con → Set and Tm𝑖, 𝑗 : (Γ : Con) → Ty𝑖, 𝑗 Γ →
Set, as sets of types and terms. Both types and terms can be substituted:

–[–] : Ty𝑖, 𝑗 Δ → Sub Γ Δ → Ty𝑖, 𝑗 Γ

–[–] : Tm𝑖, 𝑗 Δ𝐴 → (𝜎 : Sub Γ Δ) → Tm𝑖, 𝑗 Γ (𝐴[𝜎])

Additionally, we have 𝐴[id] = 𝐴 and 𝐴[𝜎 ◦ 𝛿] = 𝐴[𝜎] [𝛿], and we have the same equations

for term substitution as well.

We also have a comprehension structure: for each Γ : Con and 𝐴 : Ty𝑖, 𝑗 Γ, we have the

extended context Γ ⊲ 𝐴 : Con such that there is a natural isomorphism Sub Γ (Δ ⊲ 𝐴) ≃
(𝜎 : Sub Γ Δ) × Tm𝑖, 𝑗 Γ (𝐴[𝜎]). We will sometimes use – ⊲0 – and – ⊲1 – to disambiguate

object-level and meta-level context extensions.

• For each 𝑗 we have a lifting structure, consisting of a natural transformation ⇑ : Ty
0, 𝑗 Γ →

Ty
1, 𝑗 Γ, and an invertible natural transformation ⟨–⟩ : Tm0, 𝑗 Γ𝐴 → Tm1, 𝑗 Γ (⇑𝐴), with inverse

∼–.

The following notions are derivable:

• By moving left-to-right along Sub Γ (Δ ⊲ 𝐴) ≃ (𝜎 : Sub Γ Δ) × Tm𝑖, 𝑗 Γ (𝐴[𝜎]), and starting

from the identity morphism id : Sub (Γ ⊲𝐴) (Γ ⊲𝐴), we recover the weakening substitution
p : Sub (Γ ⊲𝐴) Γ and the zero variable q : Tm𝑖, 𝑗 (Γ ⊲𝐴) (𝐴[p]).

• By weakening q, we recover a notion of variables as De Bruijn indices. In general, the 𝑛-th

De Bruijn index is defined as q[p𝑛], where p𝑛 denotes 𝑛-fold composition of 𝑝 .

• By moving right-to-left along Sub Γ (Δ ⊲𝐴) ≃ (𝜎 : Sub Γ Δ) × Tm𝑖, 𝑗 Γ (𝐴[𝜎]), we recover the
operation which extends a morphism with a term. In the initial model, this extends a parallel

substitution with an extra term, thus justifying the view of substitutions as lists of terms. We

denote the extension operation as (𝜎, 𝑡) for 𝜎 : Sub Γ Δ and 𝑡 : Tm𝑖, 𝑗 Γ (𝐴[𝜎]).

Notation 4. De Bruijn indices are rather hard to read, so we will sometimes use nameful notation

for binders and substitutions. For example, we may write Γ ⊲ (𝑥 : 𝐴) ⊲ (𝑦 : 𝐵) for a context, and
subsequently write 𝐵 [𝑥 ↦→ 𝑡] for substituting the 𝑥 variable for some term 𝑡 : Tm𝑖, 𝑗 Γ𝐴. Using
nameless notation, we would instead have 𝐵 : Ty𝑖, 𝑗 (Γ ⊲𝐴) and 𝐵 [id, 𝑡] : Ty𝑖, 𝑗 Γ; here we recover
single substitution by extending the identity substitution id : Sub Γ Γ with 𝑡 .

We may also leave weakening implicit: if a type or term is in a context Γ, we may use it in an

extended context Γ ⊲𝐴 without marking the weakening substitution.

Definition 3.3. A model of 2LTT is a model of basic 2LTT which supports certain type formers.

For the sake of brevity, we specify here only a small collection of type formers. However, we will

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

Staged Compilation with Two-Level Type Theory 110:11

argue later that our results extend to more general notions of inductive types. We specify type

formers in the following. We omit substitution rules for type and term formers; all of these can be

specified in an evident structural way, e.g. as in (⇑𝐴) [𝜎] = ⇑(𝐴[𝜎]).
• Universes. For each 𝑖 and 𝑗 , we have a Coquand-style universe [Coquand 2019] in Ty𝑖, 𝑗 . This
consists of U𝑖, 𝑗 : Ty𝑖, 𝑗+1 Γ, together with El : Tm𝑖, 𝑗+1 ΓU𝑖, 𝑗 → Ty𝑖, 𝑗 Γ and Code, where Code
and El are inverses.

• Σ-types. We have Σ (𝑥 : 𝐴) 𝐵 : Ty𝑖, 𝑗 Γ for 𝐴 : Ty𝑖, 𝑗 Γ and 𝐵 : Ty𝑖, 𝑗 (Γ ⊲ (𝑥 : 𝐴)), together with a

natural isomorphism consisting of pairing and projections:

Tm𝑖, 𝑗 Γ (Σ (𝑥 : 𝐴) 𝐵) ≃ (𝑡 : Tm𝑖, 𝑗 Γ𝐴) × Tm𝑖, 𝑗 Γ (𝐵 [𝑥 ↦→ 𝑡])

We write (𝑡, 𝑢) for pairing and fst and snd for projections.

• Function types. We have Π (𝑥 : 𝐴) 𝐵 : Ty𝑖, 𝑗 Γ for 𝐴 : Ty𝑖, 𝑗 Γ and 𝐵 : Ty𝑖, 𝑗 (Γ ⊲ (𝑥 : 𝐴)), together
with abstraction and application

lam : Tm𝑖, 𝑗 (Γ ⊲ (𝑥 : 𝐴)) 𝐵 → Tm𝑖, 𝑗 Γ (Π (𝑥 : 𝐴) 𝐵)
app : Tm𝑖, 𝑗 Γ (Π (𝑥 : 𝐴) 𝐵) → Tm𝑖, 𝑗 (Γ ⊲ (𝑥 : 𝐴)) 𝐵

such that lam and app are inverses. Since we have explicit substitutions, this specification of

app is equivalent to the “traditional” one:

app′ : (𝑡 : Tm𝑖, 𝑗 Γ (Π (𝑥 : 𝐴) 𝐵)) → (𝑢 : Tm𝑖, 𝑗 Γ𝐴) → Tm𝑖, 𝑗 Γ (𝐵 [𝑥 ↦→ 𝑢]).

The traditional version is definable as (app 𝑡) [id, 𝑢]. We use the app-lam isomorphism

because it is formally more convenient.

• Natural numbers. We have Nat𝑖, 𝑗 : Ty𝑖, 𝑗 Γ, zero𝑖, 𝑗 : Tm𝑖, 𝑗 ΓNat𝑖, 𝑗 , and suc𝑖, 𝑗 : Tm𝑖, 𝑗 ΓNat𝑖, 𝑗 →
Tm𝑖, 𝑗 ΓNat𝑖, 𝑗 . The eliminator is the following.

NatElim : (𝑃 : Ty𝑖,𝑘 (Γ ⊲ (𝑛 : Nat𝑖, 𝑗)))
(𝑧 : Tm𝑖,𝑘 Γ (𝑃 [𝑛 ↦→ zero𝑖, 𝑗]))
(𝑠 : Tm𝑖,𝑘 (Γ ⊲ (𝑛 : Nat𝑖, 𝑗) ⊲ (pn : 𝑃 [𝑛 ↦→ 𝑛])) (𝑃 [𝑛 ↦→ suc𝑖, 𝑗 𝑛]))
(𝑡 : Tm𝑖, 𝑗 ΓNat𝑖, 𝑗)

→ Tm𝑖,𝑘 Γ (𝑃 [𝑛 ↦→ 𝑡]))

We also have the 𝛽-rules:

NatElim 𝑃 𝑧 𝑠 zero𝑖, 𝑗 = 𝑧

NatElim 𝑃 𝑧 𝑠 (suc𝑖, 𝑗 𝑡) = 𝑠 [𝑛 ↦→ 𝑡, pn ↦→ NatElim 𝑃 𝑧 𝑠 𝑡]

Note that we can eliminate from a level 𝑗 to any level 𝑘 .

Definition 3.4. The syntax of 2LTT is the initial model of 2LTT, defined as a quotient inductive-

inductive type [Kaposi et al. 2019b]. The signature for this type includes four sorts (Con, Sub,
Ty, Tm), constructors for contexts, explicit substitutions and type/term formers, and equality

constructors for all specified equations. The syntax comes with an induction principle, from which

we can also derive the recursion principle as a non-dependent special case, witnessing the initiality

of the syntax.

3.3.1 Comparison to Annekov et al. Comparing our models to the primary reference on 2LTT

[Annenkov et al. 2019], the main difference is the handling of “sizing” levels. In ibid. there is a

cumulative lifting from Ty𝑖, 𝑗 to Ty𝑖, 𝑗+1, which we do not assume. Instead, we allow elimination from

Nat𝑖, 𝑗 into any 𝑘 level. This means that we can manually define lifting maps from Nat𝑖, 𝑗 to Nat𝑖, 𝑗+1

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

110:12 András Kovács

by elimination. This is more similar to e.g. Agda, where we do not have cumulativity, but we can

define explicit lifting from Nat𝑗 : Set𝑗 to Nat𝑘 : Set𝑘 .
In ibid., “two-level type theory” specifically refers to the setupwhere the object level is a homotopy

type theory and the meta level is an extensional type theory. In contrast, we allow a wider range

of setups under the 2LTT umbrella. Ibid. also considers a range of additional strengthenings and

extensions of 2LTT [Annenkov et al. 2019, Section 2.4], most of which are useful in synthetic

homotopy theory. We do not assume any of these and stick to the most basic formulation of 2LTT.

3.3.2 Elaborating Informal Syntax. The justification for the usage of the informal syntax in Section

2 is elaboration. Elaboration translates surface notation to the formal syntax (often termed “core

syntax” in the implementation of dependently typed programming languages). Elaboration is partial:

it may throw error on invalid input. Elaboration also requires decidability of conversion for the

formal syntax, since type checking requires comparing types for conversion, which in turn requires

comparing terms. We do not detail elaboration in this paper, we only make some observations.

• Decidability of conversion can be shown through normalization. Since 2LTT is a minor

variation on ordinary MLTT, we expect that existing proofs for MLTT can be adapted

without issue [Abel et al. 2018; Coquand 2019].

• We need to elaborate the surface-level Russell-style universe notation to Coquand-style

universes with explicit El and Code annotations. It is likely that this can be achieved with

the use of bidirectional elaboration [Dunfield and Krishnaswami 2021], using two directions

(checking and inference) both for types and terms, and inserting El and Codewhen switching

between types and terms.

• The formal complexity of elaboration varies wildly, depending on how explicit the surface

syntax is. For example, Agda-style implicit arguments require metavariables and unification,

which dramatically increases the difficulty of formalization.

3.3.3 The Setoid Interpretation of the Syntax. We need to show that the 2LTT syntax, as a particular

inductive type, can be modeled in setoids. Unfortunately, there is no prior work which presents the

setoid interpretation of quotient types in the generality of quotient induction-induction. We sketch

it for our specific use case, but we argue that the interpretation is fairly mechanical and could be

adapted to any quotient inductive-inductive type. We focus on contexts and types here.

We mutually inductively define Con : Set, Con∼ : Con → Con → Prop, Ty𝑖, 𝑗 : Con → Set and
Ty∼ : Ty𝑖, 𝑗 Γ → Ty𝑖, 𝑗 Δ → Con∼ Γ Δ → Prop, where Con∼ and Ty∼ are proof-irrelevant relations.

Note that Ty∼ is heterogeneous, since we can relate types in different (but provably convertible)

contexts.

We specify • and – ⊲ – in Con. To Con∼ we add that • and – ⊲ – are congruences, and also that

Con∼ is reflexive, symmetric and transitive.

We add all type formation rules to Ty𝑖, 𝑗 , and add all quotient equations to Ty∼ as homo-

geneously indexed rules. For example, the substitution rule for Nat0 is specified as Nat0 [] :

Ty∼ (Nat0 [𝜎]) Nat0 refl∼, where 𝜎 : Sub Γ Δ and refl∼ : Con∼ Γ Γ. We also add all congruences

and reflexivity, symmetry and transitivity to Ty∼.
We add a coercion rule to types, as coerce : Con∼ Γ Δ → Ty𝑖, 𝑗 Γ → Ty𝑖, 𝑗 Δ. This is probably

familiar from the traditional specifications of type theories that use conversion relations. However,

we additionally need a coherence rule which witnesses Ty∼𝐴 (coerce 𝑝 𝐴) 𝑝 for each 𝐴 : Ty𝑖, 𝑗 Γ and

𝑝 : Con∼ Γ Δ. In short, coherence says that coercion preserves conversion.

The concise description of this setup is that (Con, Con∼) is a setoid, and (Ty𝑖, 𝑗 , Ty∼) is a setoid
fibration over (Con, Con∼), for each 𝑖 and 𝑗 . This notion of setoid fibration is equivalent to the

ordinary notion of fibration, when setoids are viewed as categories with proof-irrelevant invertible

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

Staged Compilation with Two-Level Type Theory 110:13

morphisms. This is appropriate, since types in general are interpreted as setoid fibrations in the

setoid model of a type theory.

This scheme generalizes to substitutions and terms in a mechanical way. Sub is indexed over two
contexts, so it is interpreted as a fibration over the setoid product of Con and Con. Tm is indexed

over (Γ : Con) × Ty𝑖, 𝑗 Γ, so it is interpreted as a fibration over a setoid Σ-type. In every conversion

relation we take the congruence closure of the specified quotient equations. Finally, we can use the

induction principle for the thus specified sets and relations to interpret the internal elimination

principle for the 2LTT syntax.

3.4 Models and Syntax of the Object Theory
We also need to specify the object theory, which serves as the output language of staging. In

general, the object theory corresponding to a particular flavor of 2LTT is simply the type theory

that supports only the object-level Ty
0, 𝑗 hierarchy with its type formers.

Definition 3.5. A model of the object theory is a category-with-families, with types and terms

indexed over 𝑗 ∈ N, supporting Coquand-style universes U𝑗 , type formers Π, Σ and Nat𝑗 , with
elimination from Nat𝑗 to any level 𝑘 .

Definition 3.6. Like before, the syntax of the object theory is the initial model, given as a

quotient inductive-inductive type, and it can be also interpreted in setoids.

Notation 5. From now on, by default we use Con, Sub, Ty and Tm to refer to sets in the syntax

of 2LTT. We use O to refer to the object syntax, and ConO, SubO, TyO and TmO to refer to its

underlying sets.

Definition 3.7. We recursively define the embedding of object syntax into 2LTT syntax, which

preserves all structure strictly and consists of the following functions:

⌜–⌝ : ConO → Con ⌜–⌝ : SubO Γ Δ → Sub ⌜Γ⌝ ⌜Δ⌝

⌜–⌝ : TyO𝑗 Γ → Ty
0, 𝑗 ⌜Γ⌝ ⌜–⌝ : TmO𝑗 Γ𝐴 → Tm0, 𝑗 ⌜Γ⌝ ⌜𝐴⌝

4 THE STAGING ALGORITHM
In this section we specify what we mean by a staging algorithm, then proceed to define one.

Definition 4.1. A staging algorithm consists of two functions:

Stage : Ty
0, 𝑗 ⌜Γ⌝ → TyO𝑗 Γ Stage : Tm0, 𝑗 ⌜Γ⌝𝐴 → TmO𝑗 Γ (Stage𝐴)

Note that we can stage open types and terms as long as their contexts are purely object-level. By

closed staging we mean staging only for closed types and terms.

Definition 4.2. The following properties are of interest when considering a staging algorithm:

(1) Soundness: ⌜Stage𝐴⌝ = 𝐴 and ⌜Stage 𝑡⌝ = 𝑡 .

(2) Stability: Stage ⌜𝐴⌝ = 𝐴 and Stage ⌜𝑡⌝ = 𝑡 .

(3) Strictness: the function extracted from Stage preserves all type and term formers strictly (not

just up to conversion).

Soundness and stability together state that embedding is a bijection on types and terms (up to

conversion). This is a statement of conservativity of 2LTT over the object theory. In [Annenkov

et al. 2019] a significantly weaker conservativity theorem is shown, which only expresses that

there exists a function from Tm0, 𝑗 ⌜Γ⌝ ⌜𝐴⌝ to TmO𝑗 Γ𝐴.
Strictness tells us that staging does not perform any computation in the object theory; e.g. it

does not perform 𝛽-reduction. This is practically quite important; for instance, full normalization of

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

110:14 András Kovács

2LTT is a sound and stable staging algorithm, but it is not strict, and it is practically not useful,

since it does not provide any control over inlining and 𝛽-reduction in code generation.

Note that staging necessarily preserves type and term formers up to conversion, since it is defined

on quotiented types and terms. More generally, staging respects conversion because every function

must respect conversion in the meta type theory.

4.1 The Presheaf Model
We review the presheaf model described in [Annenkov et al. 2019, Section 2.5.3]. This will directly

yield a closed staging algorithm, by recursive evaluation of 2LTT types and terms in the model.

We give a higher-level overview first. Presheaves can be viewed as a generalization of sets,

as “variable sets” which may vary over a base category. A set-based model of 2LTT yields a

standard interpreter, where every syntactic object is mapped to the obvious semantic counterpart.

The presheaf model over the category of contexts and substitutions in O generalizes this to an

interpreter where semantic values may depend on object-theoretic contexts. This allows us to

handle object-theoretic types and terms during interpretation, since these necessarily depend on

their contexts.

In the presheaf model, every semantic construction must be stable under object-level substitution,
or using alternative terminology, must be natural with respect to substitution. Semantic values

can be viewed as runtime objects during interpretation, and naturality means that object-theoretic

substitutions can be applied to such runtime objects, acting on embedded object-theoretic types

and terms. Stability underlies the core trade-off in staging:

• On one hand, every syntactic rule and construction in 2LTT must be stable, which restricts

the range of metaprograms that can be written in 2LTT. For example, we cannot make

decisions based on sizes of the object-theoretic scopes, since these sizes may be changed by

substitution.

• On the other hand, if only stable constructions are possible, we never have to prove stability,

or even explicitly mention object-theoretic contexts, substitutions and variables. The tedious

details of deep embeddings can be replaced with a handful of staging operations and typing

rules.

In principle, the base category in a 2LTT can be any category with finite products; it is not required

that it is a category of contexts and substitutions. If the base category has more structure, we get

more interesting object theories, but at the same time stability becomes more onerous, because we

must be stable under more morphisms. If the base category is simpler, with fewer morphisms, then

the requirement of stability is less restrictive. In Section 6, we will look at a concrete example for

this.

We proceed to summarize the key components of the model in a bit more detail. We denote the

components of the model by putting hats on 2LTT components, e.g. as in Ĉon.

Notation 6. In this section, we switch to naming elements of ConO as 𝑎, 𝑏 and 𝑐 , and elements of

SubO as 𝑓 , 𝑔, and ℎ, to avoid name clashing with contexts and substitutions in the presheaf model.

4.1.1 The Syntactic Category and the Meta-Level Fragment.

Definition 4.3. ̂Con : Set𝝎+1 is defined as the set of presheaves over O. Γ : Ĉon has an action

on objects |Γ | : ConO → Set𝜔 and an action on morphisms – [–] : |Γ | 𝑏 → SubO 𝑎 𝑏 → |Γ | 𝑎, such
that 𝛾 [id] = 𝛾 and 𝛾 [𝑓 ◦ 𝑔] = 𝛾 [𝑓] [𝑔].

Notation 7. Above, we reused the substitution notation – [–] for the action on morphisms. Also,

we use lowercase 𝛾 and 𝛿 to denote elements of |Γ | 𝑎 and |Δ| 𝑎 respectively.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

Staged Compilation with Two-Level Type Theory 110:15

Definition 4.4. ̂Sub 𝚪 𝚫 : Set𝝎 is the set of natural transformations from Γ to Δ. 𝜎 : Ŝub Γ Δ has

action |𝜎 | : {𝑎 : ConO} → |Γ | 𝑎 → |Δ| 𝑎 such that |𝜎 | (𝛾 [𝑓]) = (|𝜎 | 𝛾) [𝑓].

Definition 4.5. ̂Ty1,𝒋 𝚪 : Set𝝎 is the set of displayed presheaves over Γ; see e.g. [Huber 2016,

Chapter 1.2]. This is equivalent to the set of presheaves over the category of elements of Γ, but it is

usually more convenient in calculations. An 𝐴 : T̂y Γ has an action on objects |𝐴| : {𝑎 : ConO} →
|Γ | 𝑎 → Set𝑗 and an action on morphisms – [–] : |𝐴| 𝛾 → (𝑓 : SubO 𝑎 𝑏) → |𝐴| (𝛾 [𝑓]), such that

𝛼 [id] = 𝛼 and 𝛼 [𝑓 ◦ 𝑔] = 𝛼 [𝑓] [𝑔].

Notation 8. We write 𝛼 and 𝛽 respectively for elements of |𝐴| 𝛾 and |𝐵 | 𝛾 .

Definition 4.6. ̂Tm1,𝒋 𝚪𝑨 : Set𝝎 is the set of sections of the displayed presheaf 𝐴. This can be

viewed as a dependently typed analogue of a natural transformation. A 𝑡 : T̂m1, 𝑗 Γ𝐴 has action

|𝑡 | : {𝑎} → (𝛾 : |Γ | 𝑎) → |𝐴| 𝛾 such that |𝑡 | (𝛾 [𝑓]) = (|𝑡 | 𝛾) [𝑓].

We also look at he empty context and context extension with meta-level types, as these will

appear in subsequent definitions.

Definition 4.7. •̂ : ̂Con is defined as the presheaf which is constantly ⊤, i.e. |̂•| _ = ⊤.

Definition 4.8. For 𝐴 : T̂y
1, 𝑗 Γ, we define 𝚪 ̂⊲𝑨 pointwise by |Γ ⊲̂𝐴| 𝑎 := (𝛾 : |Γ | 𝑎) × |𝐴| 𝛾 and

(𝛾, 𝛼) [𝑓] := (𝛾 [𝑓], 𝛼 [𝑓]).

Using the above definitions, we can model the syntactic category of 2LTT, and also the meta-level

family structure and all meta-level type formers. For expositions in previous literature, see [Huber

2016, Chapter 1.2] and [Hofmann 1997, Section 4.1].

4.1.2 The Object-Level Fragment. We move on to modeling the object-level syntactic fragment

of 2LTT. We make some preliminary definitions. First, note that types in the object theory yield

a presheaf, and terms yield a displayed presheaf over them; this immediately follows from the

specification of a family structure in a cwf. Hence, we do a bit of a name overloading, and have

TyO𝑗 : Ĉon and TmO𝑗 : T̂y TyO𝑗 .

Definition 4.9. ̂Ty0,𝒋 𝚪 : Set𝝎 is defined as Ŝub Γ TyO𝑗 , and ̂Tm0,𝒋 𝚪𝑨 : Set𝝎 is defined as

T̂m Γ (TmO𝑗 [𝐴]).

For illustration, if𝐴 : T̂y
0, 𝑗 Γ, then𝐴 : Ŝub Γ TyO𝑗 , so |𝐴| : {𝑎 : ConO} → |Γ | 𝑎 → TyO𝑗 𝑎. In other

words, the action of 𝐴 on objects maps a semantic context to a syntactic object-level type. Likewise,

for 𝑡 : T̂m0, 𝑗 Γ𝐴, we have |𝑡 | : (𝛾 : |Γ | 𝑎) → TmO𝑗 𝑎 (|𝐴| 𝛾), so we get a syntactic object-level term

as output.

Definition 4.10. For 𝐴 : Ty
0, 𝑗 Γ, we define 𝚪 ̂⊲𝑨 as |Γ ⊲̂𝐴| 𝑎 := (𝛾 : |Γ | 𝑎) × TmO𝑗 𝑎 (|𝐴| 𝛾) and

(𝛾, 𝑡) [𝑓] := (𝛾 [𝑓], 𝑡 [𝑓]). Thus, extending a semantic context with an object-level type appends an

object-level term.

Using the above definitions and following [Annenkov et al. 2019], we can model all type formers

in T̂y
0, 𝑗 . Intuitively, this is because T̂y0, 𝑗 and T̂m0, 𝑗 return types and terms, so we can reuse the type

and term formers in the object theory.

4.1.3 Lifting.

Definition 4.11. ̂⇑𝑨 : ̂Ty1,𝒋 𝚪 is defined as TmO𝑗 [𝐴]. With this, we get that T̂m0, 𝑗 Γ𝐴 is equal to

T̂m1, 𝑗 Γ (⇑̂𝐴). Hence, we can define both quoting and splicing as identity functions in the model.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

110:16 András Kovács

4.2 Closed Staging
Definition 4.12. The evaluationmorphism, denoted E is a morphism of 2LTT models, between

the syntax of 2LTT and Ô. It is defined by recursion on the syntax (that is, appealing to the initiality

of the syntax), and it strictly preserves all structure.

Definition 4.13. Closed staging is defined as follows.

Stage : Ty
0, 𝑗 • → TyO𝑗 • Stage : Tm0, 𝑗 •𝐴 → TmO𝑗 • (Stage𝐴)

Stage𝐴 := |E𝐴| {•} tt Stage 𝑡 := |E 𝑡 | {•} tt
Note that •̂ is defined as the terminal presheaf, which is constantly ⊤. Also, |E𝐴|{•} : |E •| • →
TyO𝑗 •, therefore |E𝐴|{•} : ⊤ → TyO𝑗 • and |E 𝑡 | {•} : ⊤ → TmO𝑗 • (|E𝐴| tt).

What about general (open) staging though? Given 𝐴 : Ty
0, 𝑗 ⌜Γ⌝, we get |E𝐴| {Γ} : |⌜Γ⌝ | Γ →

TyO𝑗 . We need an element of |⌜Γ⌝ | Γ, in order to obtain object-level type. Such “generic” semantic

environments should be possible to construct, because elements of |⌜Γ⌝ | Γ are essentially lists of

object-level terms in Γ, by Definitions 4.8 and 4.7, so |⌜Γ⌝ | Γ should be isomorphic to SubO Γ Γ. It
turns out that this falls out from the stability proof of E.

4.3 Open Staging, Stability and Strictness
We define a family of functions –

𝑃
by induction on object syntax, such that the interpretation of a

context yields a generic semantic environment. The induction motives are as follows.

(Γ : ConO)𝑃 : |E ⌜Γ⌝ | Γ (𝜎 : SubO Γ Δ)𝑃 : Δ𝑃 [𝜎] = |E ⌜𝜎⌝ | Γ𝑃

(𝐴 : TyO𝑗 Γ)𝑃 : 𝐴 = |E ⌜𝐴⌝ | Γ𝑃 (𝑡 : TmO𝑗 Γ𝐴)𝑃 : 𝑡 = |E ⌜𝑡⌝ | Γ𝑃

We look at the interpretation of contexts.

• For •𝑃 , we need an element of |E ⌜•⌝ | •, hence an element of ⊤, so we define •𝑃 as tt.
• For (Γ ⊲𝐴)𝑃 , we need an element of

(𝛾 : |E⌜Γ⌝ | (Γ ⊲𝐴)) × TmO𝑗 (Γ ⊲𝐴) (|E⌜𝐴⌝ | 𝛾) .
We have Γ𝑃 : |E⌜Γ⌝ | Γ, which we can weaken as Γ𝑃 [p] : |E⌜Γ⌝ | (Γ ⊲ 𝐴), so we set the first

projection of the result as Γ𝑃 [p]. For the second projection, the goal type can be simplified

as follows:

TmO𝑗 (Γ ⊲𝐴) (|E⌜𝐴⌝ | (Γ𝑃 [p]))
= TmO𝑗 (Γ ⊲𝐴) ((|E⌜𝐴⌝ | Γ𝑃) [p]) by naturality of E⌜𝐴⌝

= TmO𝑗 (Γ ⊲𝐴) (𝐴[p]) by 𝐴𝑃

We have the zero de Bruijn variable q : TmO𝑗 (Γ ⊲ 𝐴) (𝐴[p]). Hence, we define (Γ ⊲ 𝐴)𝑃 as

(Γ𝑃 [p], q).
Thus, a generic semantic context Γ𝑃 : |E⌜Γ⌝ | Γ is just a list of variables, corresponding to the

identity substitution id : SubO Γ Γ which maps each variable to itself.

The rest of the –
𝑃
interpretation is straightforward andwe omit it here. In particular, preservation

of definitional equalities is automatic, since types, terms and substitutions are all interpreted as

proof-irrelevant equations.

Definition 4.14. We define open staging as follows.

Stage : Ty
0, 𝑗 ⌜Γ⌝ → TyO𝑗 Γ Stage : Tm0, 𝑗 ⌜Γ⌝𝐴 → TmO𝑗 Γ (Stage𝐴)

Stage𝐴 := |E𝐴| Γ𝑃 Stage 𝑡 := |E 𝑡 | Γ𝑃

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

Staged Compilation with Two-Level Type Theory 110:17

Theorem 4.15. Open staging is stable.

Proof. For𝐴 : TyO𝑗 , Stage ⌜𝐴⌝ is by definition |E ⌜𝐴⌝ | Γ𝑃 , hence by𝐴𝑃
it is equal to𝐴. Likewise,

Stage ⌜𝑡⌝ is equal to 𝑡 by 𝑡𝑃 . □

Theorem 4.16. Open staging is strict.

Proof. This is evident from the definition of the presheaf model, where the action of each type

and term former in T̂y
0, 𝑗 and T̂m0, 𝑗 Γ𝐴 is defined using the corresponding type or term former in

the object syntax. □

4.4 Implementation and Efficiency
We discuss now the operational behavior of the extracted staging algorithm and look at potential

adjustments and optimizations that make it more efficient or more convenient to implement. Recall

the types of the component functions in E:

|– | ◦ E : Ty
1𝑗 Γ → {Δ : ConO} → |E Γ | Δ → Set𝑗

|– | ◦ E : Ty
0𝑗 Γ → {Δ : ConO} → |E Γ | Δ → TyO𝑗 Δ

|– | ◦ E : Tm1𝑗 Γ𝐴 → {Δ : ConO} → (𝛾 : |E Γ | Δ) → |E𝐴| 𝛾
|– | ◦ E : Tm0𝑗 Γ𝐴 → {Δ : ConO} → (𝛾 : |E Γ | Δ) → TmO 𝑗 Δ (|E𝐴| 𝛾)

We interpret syntactic types or terms in a semantic environment 𝛾 : |E Γ | Δ. These environments

are lists containing a mix of object-level terms and semantic values. The semantic values are

represented using metatheoretic inductive types and function types.

• |Nat1 | _ is simply the set of natural numbers N.
• |Σ1𝐴𝐵 | 𝛾 is simply a set of pairs of values.

• A non-dependent function type 𝐴 →̂𝐵 is defined as the presheaf exponential. The computa-

tional part of |𝐴 →̂𝐵 | {Δ}𝛾 is given by a function with type

(Θ : ConO) → (𝜎 : SubO ΘΔ) → |𝐴| (𝛾 [𝜎]) → |𝐵 | (𝛾 [𝜎])
This may be also familiar as the semantic implication from the Kripke semantics of intuition-

istic logics. Whenever we evaluate a function application, we supply an extra id : SubO ΔΔ.
This may incur cost via the 𝛾 [id] restrictions in a naive implementation, but this is easy to

optimize, by introducing a formal representation of id, such that 𝛾 [id] immediately computes

to 𝛾 . The case of dependent functions is analogous operationally.

In summary, in the meta-level fragment of 2LTT, E yields a reasonably efficient computation of

closed values, which reuses functions from the ambient metatheory. Alternatively, instead of using

ambient functions, we could use our own implementation of function closures during staging.

In contrast, we have a bit of an efficiency problem in the handling of object-level binders: when-

ever we go under such binder we have to weaken the current semantic environment. Concretely,

when moving from Δ to Δ ⊲ 𝐴, we have to shift 𝛾 : |E Γ | Δ to 𝛾 [p] : |E Γ | (Δ ⊲ 𝐴). This cannot be
avoided by an easy optimization trick. For object-level entries in the environment, this is cheap,

because we just add an extra explicit weakening, but for semantic values weakening may need to

perform deep traversals.

The same efficiency issue arises in formal presheaf-based normalization-by-evaluation, such as

in [Altenkirch and Kaposi 2017] and [Coquand 2019]. However, in practical implementations this

issue can be fully solved by using De Bruijn levels in the semantic domain, thus arranging that

weakening has no operational cost on semantic values; see [Coquand 1996], [Abel et al. 2011] and

[Abel and Coquand 2007] for implementations in this style. We can use the same solution in staging.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

110:18 András Kovács

It is a somewhat unfortunate mismatch that indices are far more convenient in formalization, but

levels are more efficient in practice.

In our prototype implementation, we use the above optimization with De Bruijn levels, and

we drop explicit substitutions from the 2LTT core syntax. In the object-level syntax, we use De

Bruijn levels for variables and closures in binders. This lets us completely skip the weakening of

environments, which is slightly more efficient than the more faithfully extracted algorithm.

Additionally, we use an untyped tagged representation of semantic values, since in Haskell (the

implementation language) we do not have strong enough types to represent typed semantic values.

For example, there are distinct data constructors storing semantic function values, natural number

literals and quoted expressions.

Caching. In a production-strength implementation we would need some caching mechanism, to

avoid excessive duplication of code. For example, if we use the staged map function multiple times

with the same type and function arguments, we do not want to generate separate code for each

usage. De-duplicating object-level code with function types is usually safe, since function bodies

become closed top-level code after closure conversion. We leave this to future work.

5 SOUNDNESS OF STAGING
In this section we prove soundness of staging. We build a proof-relevant logical relation between

the evaluation morphism E and a restriction morphism, which restricts 2LTT syntax to object-level

contexts. The relational interpretations of Ty
0, 𝑗 and Tm0, 𝑗 will yield the soundness property.

5.1 Working in ˆO

We have seen that 2LTT can be modeled in the presheaf topos Ô. Additionally, Ô supports all type

formers of extensional type theory and certain other structures which are stable under object-level

substitution. As all constructions in this section must be stable, it makes sense to work internally

to Ô. This style has been previously used in normalization proofs [Coquand 2019] and also in the

metatheory of cubical type theories [Cavallo et al. 2020; Licata et al. 2018; Orton and Pitts 2016].

When we work internally in a model of a type theory, we do not explicitly refer to contexts,

types, and substitutions. For example, when working in Agda, we do not refer to Agda’s typing

contexts. Instead, we only work with terms, and use functions and universes to abstract over types

and semantic contexts. Hence, we have to convert along certain isomorphisms when we switch

between the internal and external views. In the following, we summarize features in Ô and also the

internal-external conversions.

We write Ŝet𝑗 for ordinal-indexed Russell-style universes. Formally, we have Coquand-style

universes, but for the sake of brevity we omit El and Code from internal syntax. Universes are

cumulative, and closed under Π, Σ, extensional identity – = – and inductive types. We use the

same conventions as in Notation 1.

The basic scheme for internalization is as follows:

Γ : Ĉon is internalized as Γ : Ŝet𝜔

𝜎 : Ŝub Γ Δ is internalized as 𝜎 : Γ → Δ

𝐴 : T̂y
1, 𝑗 Γ is internalized as 𝐴 : Γ → Ŝet𝑗

𝑡 : T̂m1, 𝑗 Γ𝐴 is internalized as 𝑡 : (𝛾 : Γ) → 𝐴𝛾

5.1.1 Object-Theoretic Syntax. The syntax of the object theory is clearly fully stable under object-

theoretic substitution, so we can internalize all of its type and term formers. We internalize

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

Staged Compilation with Two-Level Type Theory 110:19

object-level types and terms as TyO𝑗 : Ŝet0 and TmO𝑗 : TyO𝑗 → Ŝet0. TyO𝑗 is closed under type

formers. For instance, we have

Nat𝑗 : TyO𝑗 zero𝑗 : TmO𝑗 Nat𝑗 suc𝑗 : TmO𝑗 Nat𝑗 → TmO𝑗 Nat𝑗

together with NatElim, and likewise we have all other type formers.

5.1.2 Internal E. We also use an internal view of E which maps 2LTT syntax to internal values; i.e.

we compose E with internalization. Below, note that the input to E is external, so we mark E as
being parameterized by external input.

E (Γ : Con) : Ŝet𝜔
E (𝜎 : Sub Γ Δ) : E Γ → EΔ

E (𝐴 : Ty
1, 𝑗 Γ) : E Γ → Ŝet𝑗

E (𝑡 : Tm1, 𝑗 Γ) : (𝛾 : E Γ) → E𝐴𝛾

E (𝐴 : Ty
0, 𝑗 Γ) : E Γ → TyO𝑗

E (𝑡 : Tm0, 𝑗 Γ𝐴) : (𝛾 : E Γ) → TmO𝑗 (E𝐴𝛾)

5.1.3 Object-Level Fragment of 2LTT. The purely object-level syntactic fragment of 2LTT can

be internalized as follows. We define externally the presheaf of object-level types as |Ty
0, 𝑗 | Γ :=

Ty
0, 𝑗 ⌜Γ⌝, and the displayed presheaf of object-level terms over Ty

0, 𝑗 as |Tm0, 𝑗 | {Γ}𝐴 := Tm0, 𝑗 ⌜Γ⌝𝐴.

Hence, internally we have Ty
0, 𝑗 : Ŝet0 and Tm0, 𝑗 : Ty0, 𝑗 → Ŝet0. Ty0, 𝑗 is closed under all type formers,

analogously as we have seen for TyO𝑗 .

5.1.4 Embedding. Now, the embedding operation ⌜–⌝ can be also internalized on types and terms,

as ⌜–⌝ : TyO𝑗 → Ty
0, 𝑗 , and ⌜–⌝ : TmO 𝑗 𝐴 → Tm0, 𝑗 ⌜𝐴⌝. Embedding strictly preserves all structure.

5.2 The Restriction Morphism
We define a family of functions R from the 2LTT syntax to objects in Ô. We will relate this to the

evaluation morphism E in the relational interpretation. In short, R restricts 2LTT syntax so that it

can only depend on object-level contexts, which are given as ⌜Γ⌝.

Definition 5.1. We specify the types of the restriction operations internally, and the |– |
components of the operations externally. The naturality of |– | is straightforward in each case.

R (Γ : Con) : Ŝet0 R (𝜎 : Sub Γ Δ) : R Γ → RΔ
|R Γ | Δ := Sub ⌜Δ⌝ Γ |R𝜎 | 𝛾 := 𝜎 ◦ 𝛾

R (𝐴 : Ty
1, 𝑗 Γ) : R𝛾 → Ŝet0 R (𝑡 : Tm1, 𝑗 Γ𝐴) : (𝛾 : R Γ) → R𝐴𝛾

|R𝐴| {Δ}𝛾 := Tm1, 𝑗 ⌜Δ⌝ (𝐴[𝛾]) |R 𝑡 | 𝛾 := 𝑡 [𝛾]

R (𝐴 : Ty
0, 𝑗 Γ) : R Γ → Ty

0, 𝑗 R (𝑡 : Tm0, 𝑗 Γ𝐴) : (𝛾 : R Γ) → Tm0, 𝑗 (R𝐴𝛾)
|R𝐴| 𝛾 := 𝐴[𝛾] |R 𝑡 | 𝛾 := 𝑡 [𝛾]

5.2.1 Preservation Properties of R. First, we note that R strictly preserves id, – ◦ – and type/term

substitution, and it preserves • and – ⊲1 – up to isomorphism. We have the following isomorphisms

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

110:20 András Kovács

internally to Ô:

R• : R • ≃ ⊤
R⊲1 : R (Γ ⊲1 𝐴) ≃ ((𝛾 : R Γ) × R𝐴𝛾)

Notation 9. When we have an isomorphism 𝑓 : 𝐴 ≃ 𝐵, we may write 𝑓 for the function in 𝐴 → 𝐵,

and 𝑓 −1 : 𝐵 → 𝐴 for its inverse.

Notation 10. We can use a pattern matching notation on isomorphisms. For example, if 𝑓 : 𝐴 ≃ 𝐵,

then we may write (𝜆 (𝑓 𝑎). 𝑡) : 𝐵 → 𝐶 , and likewise (𝜆 (𝑓 −1 𝑏). 𝑡) : 𝐴 → 𝐶 , where the function

bodies can refer to the bound 𝑎 : 𝐴 and 𝑏 : 𝐵 variables.

The preservation properties R• and R⊲1 mean that R is a pseudomorphism in the sense of [Kaposi

et al. 2019a], between the syntactic cwf given by (Ty
1, 𝑗 , Tm1, 𝑗) and the corresponding cwf structure

in Ô. In ibid. there is an analysis of such cwf morphisms, from which we obtain the following

additional preservation properties:

• Meta-level Σ-types are preserved up to isomorphism, so we have

RΣ : R (Σ𝐴𝐵) 𝛾 ≃ ((𝛼 : R𝐴) × R𝐵 (R−1⊲1 (𝛾, 𝛼))).

The semantic values of R (Σ𝐴𝐵) 𝛾 are 2LTT terms with type (Σ𝐴𝐵) [𝛾], restricted to object-

level contexts. We can still perform pairing and projection with such restricted terms; hence

the preservation property.

• Meta-level Π-types and universes are preserved in a lax way. For Π, we have

Rapp : R (Π𝐴𝐵) 𝛾 → (𝛼 : R𝐴𝛾) → R𝐵 (R−1⊲1 (𝛾, 𝛼))

such that Rapp (R 𝑡 𝛾) 𝛼 = R (app 𝑡) (R−1⊲1 (𝛾, 𝛼)). In this case, we can apply a restricted term

with a Π-type to a restricted term, but we cannot do lambda-abstraction, because that would

require extending the context with a meta-level binder. For U1, 𝑗 , we have

REl : RU1, 𝑗 𝛾 → Ŝet𝑗

such that REl (R 𝑡 𝛾) = R (El 𝑡) 𝛾 . Here, we only have lax preservation simply because Ŝet𝑗
is much larger than the the set of syntactic 2LTT types, so not every semantic Ŝet𝑗 has a
syntactic representation.

• Meta-level positive (inductive) types are preserved in an oplax way. In the case of natural

numbers, we have

RN : N→ RNat1, 𝑗 𝛾 .

This is a “serialization” map: from a metatheoretic natural number we compute a numeral as a

closed 2LTT term. This works analogously for other inductive types, including parameterized

ones. For an example, from a semantic list of restricted terms we would get a syntactic term

with list type, containing the same restricted terms.

5.2.2 Action on Lifting. We have an isomorphism R (⇑𝐴) 𝛾 ≃ Tm0, 𝑗 (R𝐴𝛾). This is given by

quoting and splicing: we convert between restricted meta-level terms with type ⇑𝐴 and restricted

object-level terms with type 𝐴. Hence, we write components of this isomorphism as ∼– and ⟨–⟩,
as internal analogues of the external operations. With this, we also have R ⟨𝑡⟩ 𝛾 = ⟨R 𝑡 𝛾⟩ and
R∼ 𝑡 𝛾 = ∼(R 𝑡 𝛾).

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

Staged Compilation with Two-Level Type Theory 110:21

5.2.3 Action on – ⊲0 –. We have preservation up to isomorphism:

R⊲0 : R (Γ ⊲0 𝐴) ≃ ((𝛾 : R Γ) × Tm0, 𝑗 (R𝐴𝛾))
This is because substitutions targeting Γ ⊲0 𝐴 are the same as pairs of substitutions and terms, by

the specification of – ⊲0 –.

5.2.4 Action on Object-Level Types and Terms. R preserves all structure in the object-level fragment

of 2LTT. This follows from the R specification: an external type 𝐴 : Ty
0, 𝑗 Γ is directly internalized

as an element of Ty
0, 𝑗 , and the same happens for 𝑡 : Tm0, 𝑗 Γ𝐴.

5.3 The Logical Relation
Internally to Ô, we define by induction on the syntax of 2LTT a proof-relevant logical relation

interpretation, written as –
≈
. The induction motives are specified as follows.

(Γ : Con)≈ : E Γ → R Γ → Ŝet𝜔
(𝜎 : Sub Γ Δ)≈ : Γ≈ 𝛾 𝛾 ′ → Δ≈ (E𝜎 𝛾) (R𝜎 𝛾 ′)

(𝐴 : Ty
1, 𝑗 Γ)≈ : Γ≈ 𝛾 𝛾 ′ → E𝐴𝛾 → R𝐴𝛾 ′ → Ŝet𝑗

(𝑡 : Tm1, 𝑗 Γ𝐴)≈ : (𝛾≈ : Γ≈ 𝛾 𝛾 ′) → 𝐴≈ 𝛾≈ (E 𝑡 𝛾) (R 𝑡 𝛾 ′)
(𝐴 : Ty

0, 𝑗 Γ)≈ : Γ≈ 𝛾 𝛾 ′ → ⌜E𝐴𝛾⌝ = R𝐴𝛾 ′

(𝑡 : Tm0, 𝑗 Γ𝐴)≈ : Γ≈ 𝛾 𝛾 ′ → ⌜E 𝑡 𝛾⌝ = R 𝑡 𝛾 ′

For Con, Sub and meta-level types and terms, this is a fairly standard logical relation interpretation:

contexts are mapped to relations, types to dependent relations, and substitutions and terms respect

relations. We will only have modest complications in meta-level type formers because we will

sometimes need to use the lax/oplax preservations properties of R. For object-level types and terms,

we get soundness statements: evaluation via E followed by embedding back to 2LTT is the same as

restriction to object-level contexts. We describe the –
≈
interpretation in the following.

5.3.1 Syntactic Category and Terminal Object. Here, we simply have id≈ 𝛾≈ := 𝛾≈ and (𝜎 ◦𝛿)≈ 𝛾≈ :=

𝜎≈ (𝛿≈ 𝛾≈). The terminal object is interpreted as •≈ 𝛾 𝛾 ′ := ⊤.

5.3.2 Meta-Level Family Structure. We interpret context extension and type/term substitution as

follows. Note the usage of the pattern matching notation on the R−1⊲1 isomorphism.

(Γ ⊲1 𝐴)≈ (𝛾, 𝛼) (R−1⊲1 (𝛾
′, 𝛼 ′)) := (𝛾≈ : Γ≈ 𝛾 𝛾 ′) ×𝐴≈ 𝛾≈ 𝛼 𝛼 ′

(𝐴[𝜎])≈ 𝛾≈ 𝛼 𝛼 ′
:= 𝐴≈ (𝜎≈ 𝛾≈) 𝛼 𝛼 ′

(𝑡 [𝜎])≈ 𝛾≈ := 𝑡≈ (𝜎≈ 𝛾≈)
It is enough to specify the –

≈
action on extended substitutions (𝜎, 𝑡) : Sub Γ (Δ⊲𝐴), p : Sub (Γ⊲𝐴) Γ,

p : Sub (Γ ⊲𝐴) Γ and q : Tm1, 𝑗 (Γ ⊲𝐴) (𝐴[p]). The category-with-families equations hold evidently.

(𝜎, 𝑡)≈ 𝛾≈ := (𝜎≈ 𝛾≈, 𝑡≈ 𝛾≈) p≈ (𝛾≈, 𝑡≈) := 𝛾≈ q≈ (𝛾≈, 𝑡≈) := 𝑡≈

5.3.3 Meta-Level Natural Numbers. First, we have to define a relation:

(Nat1, 𝑗)≈ : Γ≈ 𝛾 𝛾 ′ → N→ RNat1, 𝑗 𝛾 ′ → Ŝet𝑗
(Nat1, 𝑗)≈ 𝛾≈ 𝑛 𝑛′ := (RN 𝑛 = 𝑛′)

Note that evaluation sends Nat1, 𝑗 to the semantic type of natural numbers, i.e. ENat1, 𝑗 = N. We

refer to the serialization map RN : N→ RNat1, 𝑗 𝛾 ′ above. In short, (Nat1, 𝑗)≈ expresses canonicity:
𝑛′ is canonical precisely if it is of the form RN 𝑛 for some 𝑛.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

110:22 András Kovács

For zero≈ and suc≈, we need to show that serialization preserves zero and suc respectively, which
is evident.

Let us look at elimination. We need to define the following:

(NatElim 𝑃 𝑧 𝑠 𝑛)≈ 𝛾≈ : 𝑃≈ (𝛾≈, 𝑛≈ 𝛾≈) (E (NatElim 𝑃 𝑧 𝑠 𝑛) 𝛾) (R (NatElim 𝑃 𝑧 𝑠 𝑛) 𝛾 ′)

Unfolding E, we can further compute this to the following:

(NatElim 𝑃 𝑧 𝑠 𝑛)≈ 𝛾≈ :

𝑃≈ (𝛾≈, 𝑛≈ 𝛾≈) (NatElim (𝜆 𝑛. E 𝑃 (𝛾, 𝑛)) (E 𝑧 𝛾) (𝜆 𝑛 pn. E 𝑠 ((𝛾, 𝑛), pn)) (E𝑛𝛾))
(R (NatElim 𝑃 𝑧 𝑠 𝑛) 𝛾 ′)

In short, we need to show that NatElim preserves relations. Here we switch to the external view

temporarily. By Definition 5.1, we know that

|R (NatElim 𝑃 𝑧 𝑠 𝑛) | 𝛾 ′ = (NatElim 𝑃 𝑧 𝑠 𝑛)) [𝛾 ′] .

At the same time, we have 𝑛≈ 𝛾≈ : RN (E𝑛𝛾) = R𝑛𝛾 ′, hence we know externally that |E𝑛 | 𝛾 =

𝑛[𝛾 ′]. In other words, 𝑛[𝛾 ′] is canonical and is obtained as the serialization of E𝑛𝛾 . Therefore,
(NatElim 𝑃 𝑧 𝑠 𝑛) [𝛾 ′] is definitionally equal to |E𝑛 | 𝛾-many applications of 𝑠 to 𝑧, and we can use

|E𝑛 | 𝛾-many applications of 𝑠≈ to 𝑧≈ to witness the goal type. The 𝛽-rules for NatElim are also

respected by this definition.

5.3.4 Meta-Level Σ-Types. We define relatedness pointwise. Pairing and projection are interpreted

as meta-level pairing and projection.

(Σ𝐴𝐵)≈ 𝛾≈ : ((𝛼 : E𝐴𝛾) × E𝐵 (𝛾, 𝛼)) → R (Σ𝐴𝐵) 𝛾 ′ → Ŝet𝑗

(Σ𝐴𝐵)≈ 𝛾≈ (𝛼, 𝛽) (R−1Σ (𝛼 ′, 𝛽 ′)) := (𝛼≈
: 𝐴≈ 𝛾≈ 𝛼 𝛼 ′) × 𝐵≈ (𝛾≈, 𝛼≈) 𝛽 𝛽 ′

5.3.5 Meta-Level Π-Types. We again use a pointwise definition. Note that we need to use Rapp to
apply 𝑡 ′ : R (Π𝐴𝐵) 𝛾 ′ to 𝛼 ′

.

(Π𝐴𝐵)≈ 𝛾≈ : ((𝛼 : E𝐴𝛾) → E𝐵 (𝛾, 𝛼)) → R (Π𝐴𝐵) 𝛾 ′ → Ŝet𝑗
(Π𝐴𝐵)≈ 𝛾≈ 𝑡 𝑡 ′ := (𝛼 : E𝐴𝛾) (𝛼 ′

: R𝐴𝛾 ′) (𝛼≈
: 𝐴≈ 𝛾≈ 𝛼 𝛼 ′) → 𝐵≈ (𝛾≈, 𝛼≈) (𝑡 𝛼) (Rapp 𝑡 ′ 𝛼 ′)

For abstraction and application, we use a curry-uncurry definition:

(lam 𝑡)≈ 𝛾≈ := 𝜆 𝛼 𝛼 ′ 𝛼≈ . 𝑡≈ (𝛾≈, 𝛼≈)
(app 𝑡)≈ (𝛾≈, 𝛼≈) := 𝑡≈ 𝛾≈ 𝛼 𝛼 ′ 𝛼≈

5.3.6 Meta-Level Universes. We interpret U1, 𝑗 as a semantic relation space:

(U1, 𝑗)≈ 𝛾≈ : Ŝet𝑗 → RU1, 𝑗 𝛾
′ → Ŝet𝑗+1

(U1, 𝑗)≈ 𝛾≈ 𝑡 𝑡 ′ := 𝑡 → REl 𝑡 ′ → Ŝet𝑗

Note that we have

(El 𝑡)≈ : (𝛾≈ : Γ≈ 𝛾 𝛾 ′) → E 𝑡 𝛾 → R (El 𝑡) 𝛾 ′ → Ŝet𝑗

(Code 𝑡)≈ : (𝛾≈ : Γ≈ 𝛾 𝛾 ′) → E 𝑡 𝛾 → R (El 𝑡) 𝛾 ′ → Ŝet𝑗 .

The types coincide because of the equation R (El 𝑡) 𝛾 ′ = REl (R 𝑡 𝛾 ′). Therefore we can interpret El
and Code as identity maps, as (El 𝑡)≈ := 𝑡≈ and (Code 𝑡)≈ := 𝑡≈.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

Staged Compilation with Two-Level Type Theory 110:23

5.3.7 Object-Level Family Structure. We interpret extended contexts as follows.

(Γ ⊲0 𝐴)≈ (𝛾, 𝛼) (R−1⊲0 (𝛾 ′, 𝛼 ′)) := (𝛾≈ : Γ≈ 𝛾 𝛾 ′) × (⌜𝛼⌝ = 𝛼 ′)
Note that 𝛼 : TmO𝑗 (E𝐴𝛾), so ⌜𝛼⌝ : Tm0, 𝑗 ⌜E𝐴𝛾⌝, but since 𝐴≈ 𝛾≈ : ⌜E𝐴𝛾⌝ = R𝐴𝛾 ′, we also
have ⌜𝛼⌝ : Tm0, 𝑗 (R𝐴𝛾 ′). Thus, the equation ⌜𝛼⌝ = 𝛼 ′

is well-typed. For type substitution, we

need

(𝐴[𝜎])≈ 𝛾≈ : ⌜E (𝐴[𝜎]) 𝛾⌝ = R (𝐴[𝜎]) 𝛾 ′ .
The goal type computes to ⌜E𝐴 (E𝜎 𝛾)⌝ = R𝐴 (R𝜎 𝛾 ′). This is obtained directly from 𝐴≈ (𝜎≈ 𝛾≈).
Similarly,

(𝑡 [𝜎])≈ 𝛾≈ := 𝑡≈ (𝜎≈ 𝛾≈) p≈ (𝛾≈, 𝛼≈) := 𝛾≈

(𝜎, 𝑡)≈ 𝛾≈ := (𝜎≈ 𝛾≈, 𝑡≈ 𝛾≈) q≈ (𝛾≈, 𝛼≈) := 𝛼≈

5.3.8 Lifting Structure.

(⇑𝐴)≈ : Γ≈ 𝛾 𝛾 ′ → TmO𝑗 (E𝐴𝛾) → R (⇑𝐴) 𝛾 ′ → Ŝet𝑗
(⇑𝐴)≈ 𝛾≈ 𝑡 𝑡 ′ := (⌜𝑡⌝ = ∼𝑡 ′)

This is well-typed by 𝐴≈ 𝛾≈ : ⌜E𝐴𝛾⌝ = R𝐴𝛾 ′, which implies that ⌜𝑡⌝ : TmO𝑗 (R𝐴𝛾 ′). For ⟨𝑡⟩, we
need

⟨𝑡⟩≈ 𝛾≈ : ⌜E ⟨𝑡⟩ 𝛾⌝ = ∼(R ⟨𝑡⟩ 𝛾 ′).
The goal type can be further computed to ⌜E 𝑡 𝛾⌝ = R 𝑡 𝛾 ′, which we prove by 𝑡≈ 𝛾≈. For splicing,
we need

(∼𝑡)≈ 𝛾≈ : ⌜E∼𝑡 𝛾⌝ = R∼𝑡 𝛾 ′

where the goal type computes to ⌜𝐹 𝑡 𝛾⌝ = ∼(R 𝑡 𝛾 ′), but this again follows directly from 𝑡≈ 𝛾≈.

5.3.9 Object-Level Type Formers. Lastly, object-level type formers are straightforward. For types,

we need ⌜E𝐴𝛾⌝ = R𝐴𝛾 ′, and likewise for terms. Note that E and ⌜–⌝ preserve all structure, and
R preserves all structure on object-level types and terms. Hence, each object-level 𝐴 and 𝑡 case in

–
≈
trivially follows from induction hypotheses.

This concludes the definition of the –
≈
interpretation.

5.4 Soundness
Definition 5.2. First, we introduce shorthands for external operations that can be obtained from

–
≈
.

For Γ : Con we get |Γ≈ | : {Δ : ConO} → |E Γ | Δ → Sub ⌜Δ⌝ Γ → Set𝑗
For 𝐴 : Ty

0, 𝑗 Γ we get |𝐴≈ | : |Γ≈ | 𝛾 𝛾 ′ → ⌜E𝐴𝛾⌝ = 𝐴[𝛾 ′]
For 𝑡 : Tm0, 𝑗 Γ𝐴 we get |𝑡≈ | : |Γ≈ | 𝛾 𝛾 ′ → ⌜E 𝑡 𝛾⌝ = 𝑡 [𝛾 ′]

Since –
≈
was defined in Ô, we also know that the above are all stable under object-theoretic

substitution.

Theorem 5.3 (Soundness for generic contexts). For each Γ : ConO, we have Γ𝑃
≈
: |Γ≈ | Γ𝑃 id.

Proof. We define –
𝑃≈

by induction on object-theoretic contexts. •𝑃
≈
: ⊤ is defined trivially

as tt. For (Γ ⊲𝐴)𝑃≈, we need (𝛾≈ : |Γ |≈ (Γ𝑃 [p]) p) × (⌜q⌝ = q). We get Γ𝑃
≈
: |Γ≈ | Γ𝑃 id. Because

of the naturality of |Γ≈ |, this can be weakened to Γ𝑃
≈ [p] : |Γ≈ | (Γ𝑃 [p]) p. Also, ⌜q⌝ = q holds

immediately. □

Theorem 5.4 (Soundness of staging). The open staging algorithm from Definition 4.14 is sound.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

110:24 András Kovács

Proof.

• For 𝐴 : Ty
0, 𝑗 ⌜Γ⌝, we have that ⌜Stage𝐴⌝ = ⌜ |E𝐴| Γ𝑃 ⌝ by the definition of Stage, and

moreover we have |𝐴≈ | Γ𝑃≈ : ⌜ |E𝐴| Γ𝑃 ⌝ = 𝐴[id], hence ⌜Stage𝐴⌝ = 𝐴.

• For 𝑡 : Tm0, 𝑗 ⌜Γ⌝𝐴, using |𝑡≈ | Γ𝑃≈ : ⌜ |E 𝑡 | Γ𝑃 ⌝ = 𝑡 [id], we likewise have ⌜Stage 𝑡⌝ =

⌜ |E 𝑡 | Γ𝑃 ⌝ = 𝑡 [id] = 𝑡 .

□

Corollary 5.5 (Conservativity of 2LTT). From the soundness and stability of staging, we get
that ⌜–⌝ is bijective on types and terms, hence TyO𝑗 Γ ≃ Ty

0, 𝑗 ⌜Γ⌝ and TmO𝑗 Γ𝐴 ≃ Tm0, 𝑗 ⌜Γ⌝ ⌜𝐴⌝.

Alternative presentations. The above conservativity proof could be rephrased as an instance of

more modern techniques which let us implicitly handle stability under 2LTT substitutions as well,

not just O substitutions. This amounts to working in a modal internal language, where modalities

control the interaction of the different base categories.

• Using synthetic Tait computability [Sterling 2021], we work in the internal language of the

glued category IdÔ ↓ R.
• Using relative induction [Bocquet et al. 2021], we work in the modal type theory obtained

from the dependent right adjoint functor R∗ : �2LTT → Ô, where �2LTT denotes presheaves

over the syntactic category of 2LTT.

We do not use either of these in this paper, for the following reasons. First, the author of the paper

is not sufficiently familiar with the above techniques. Second, the task at hand is not too technically

difficult, so using advanced techniques is not essential. Contrast e.g. normalization for cubical type

theories, which is not feasible to handle without the more synthetic presentations [Sterling and

Angiuli 2021].

6 INTENSIONAL ANALYSIS
We briefly discuss intensional analysis in this section. This means analyzing the internal structure

of object-level terms, i.e. values of ⇑𝐴. Disallowing intensional analysis is a major simplification,

which is sometimes enforced in implementations, for example in MetaML [Taha and Sheard 2000].

If we have sufficiently expressive inductive types in the meta-level language, it is possible to

simply use inductive deeply embedded syntaxes, which can be analyzed; our example in Section

2.2 for embedding a simply typed lambda calculus is like this. However, native metaprogramming

features could be more concise and convenient than deep embeddings, similarly to how staged

programming is more convenient than code generation with deeply embedded syntaxes.

In the following, we look at the semantics of intensional analysis in the standard presheaf models.

We only discuss basic semantics here, and leave practical considerations to future work.

Definition 6.1. The Yoneda embedding is a functor from O to Ô, sending Γ : ConO to yΓ : Ĉon,
such that |yΓ | Δ = SubO Δ Γ. We say that Γ : Ĉon is representable if it is isomorphic to a Yoneda-

embedded context.

Lemma 6.2 (Yoneda lemma). We have Ŝub (yΓ) Δ ≃ |Δ| Γ [Mac Lane 1998, Section III.2]. Also, we
have T̂m1, 𝑗 (yΓ)𝐴 ≃ |𝐴| id, where id : SubO Γ Γ.

The Yoneda lemma restricts possible dependencies on representable contexts. For example,

consider the staging behavior of 𝑡 : Tm1 (• ⊲ (𝑥 : Bool0)) Bool1. Staging 𝑡 yields essentially a

natural transformation Ŝub (E(• ⊲ Bool0)) B, where B is the metatheoretic type with two elements,

considered as a constant presheaf. Now, if E(• ⊲ Bool0) is representable, then Ŝub (E(•⊲Bool0)) B ≃
B, so 𝑡 can be staged in at most two different ways.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

Staged Compilation with Two-Level Type Theory 110:25

Which contexts are representable? In the specific 2LTT in this paper, ⌜Γ⌝ is always representable
in the presheaf model. |E⌜Γ⌝ | Δ contains lists of object-theoretic terms, hence E⌜Γ⌝ ≃ yΓ. This
implies that intensional analysis is not compatible with the standard presheaf model, for our 2LTT.

Consider a very basic feature of intensional analysis, decidability of definitional equality for

object-level Boolean expressions.

decEq : (𝑥 𝑦 : ⇑Bool0) → (𝑥 =1 𝑦) +1 (𝑥 ≠1 𝑦)
The Yoneda lemma says that decEq cannot actually decide definitional equality. We expect that

decEq lets us define non-constant maps from ⇑Bool0 to Bool1, but the Yoneda lemma implies that

we only have two terms with distinct semantics in Tm1 (• ⊲0 Bool0) Bool1.
A more direct way to show infeasibility of decEq in Ô is to note that definitional inequality for

object-level terms is not stable under substitution, since inequal variables can be mapped to equal

terms.

Stability under weakening only. We can move to different 2LTT setups, where stability under

substitution is not required. We may have weakenings only as morphisms in O. A weakening from

Γ to Δ describes how Γ can be obtained by inserting zero or more entries to Δ. A wide range of

intensional analysis features are stable under weakenings. For example, decEq now holds in Ô
whenever object-theoretic definitional equality is in fact decidable. We also dodge the Yoneda

lemma, since E ⌜Γ⌝ is not necessarily representable anymore: |E ⌜Γ⌝ | Δ is still a set of lists of terms,

but weakenings from Δ to Γ are not lists of terms.

As a trade-off, if there is no notion of substitution in the specification of the object theory, it is

not possible to specify dependent or polymorphic types there. We need a substitution operation to

describe dependent elimination or polymorphic instantiation.

However, stability under weakening is still sufficient for many practical use cases, for example

the monomorphization setup in Section 2.4.1. Here, we only have weakening as definitional equality

in the object theory, and we do not have 𝛽𝜂-rules.

Closed modalities. Another option is to add a closed or crisp modality for modeling closed object-

level terms [Licata et al. 2018]. Since closed terms are not affected by substitution, we are able to

analyze them, and we can also recover open terms by explicitly abstracting over contexts [Hofmann

1999; Hu et al. 2022]. Function pointers in the style of the C programming language could be also an

interesting use case, since these must become closed after staging (as they cannot capture closure

environments).

7 RELATEDWORK
The work Annekov et al. on two-level type theory [Annenkov et al. 2019], building on [Capriotti

2017] and [Voevodsky 2013], is the foremost inspiration in the current work. Interestingly, the

above works do mention metaprogramming as a source of intuition for 2LTT, but they only briefly

touch on this aspect, and in [Annenkov et al. 2019] the main focus is on extensions of basic

2LTT which do not have staging semantics anymore. Ibid. conjectures the strong conservativity of

2LTT in Proposition 2.18, and suggests categorical gluing as proof strategy. In this work, we do

essentially that: our presheaf model and the logical relation model could be merged into a single

instance of gluing along the R morphism; this merges staging and its soundness proof. We split

this construction to two parts in order to get a self-contained presentation of the staging algorithm.

[Hofmann 1999] models higher-order abstract syntax of simply typed object languages in

presheaves over various syntactic categories. The main difference between HOAS and 2LTT is

that the former represents object-level binders using meta-level functions while the latter has a

primitive notion of object-level binding.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

110:26 András Kovács

The multi-stage calculus in [Kawata and Igarashi 2019] supports staging operations and type

dependencies. However, there are major differences to the current work. First, ibid. does not have

large elimination, hence it does not support computing types by staging. Second, it does not

support staged compilation in the sense of Definition 4.1; there is no judgment which ensures that

staging operations can be eliminated and a purely “object-level” program can be extracted from

a multi-stage program. Rather, the system supports runtime code generation. There are several
modal multi-stage systems which support runtime code generation but not staged compilation,

such as those based on S4 modalities (e.g. [Davies and Pfenning 2001]) or contextual modalities

([Jang et al. 2022]).

Idris 1 supports compile-time partial evaluation, through static annotations on function argu-

ments [Brady and Hammond 2010]. This can be used for dependently typed code generation, but

Idris 1 does not guarantee that partial evaluation adequately progresses. For example, we can pass

a neutral value as static argument in Idris 1, while in 2LTT static function arguments are always

canonical during staging.

Our notation for quoting and splicing is borrowed from MetaML [Taha and Sheard 2000]. In the

following, we compare 2LTT to MetaML, MetaOCaml [Kiselyov 2014] and typed Template Haskell

[Xie et al. 2022].

2LTT explicitly tracks stages of types, in contrast to the mentioned systems. There, we have type

lifting (usually called Code), quoting and splicing, but lifting does not change the universe of types.

We can write a function with type Bool → CodeBool, and the two Bool occurrences refer to the

exact same type.

This causes some operational confusion down the line, and additional disambiguation is needed

for stages of binders. For example, in typed Template Haskell, top-level binders behave as runtime

binders when used under a quote, but behave as static binders otherwise. Given a top-level definition

𝑏 = True, if we write a top-level definition expr = [| | 𝑏 | |], then 𝑏 is a variable in the staging output,

but if we write expr = if 𝑏 then [| | True | |] else [| | False | |], then 𝑏 is considered to be a static value.

In contrast, 2LTT does not distinguish top-level and local binders, and in fact it has no syntactic or

scope-based restrictions; everything is enforced by typing.

2LTT supports staging for types and dependent types, while to our knowledge no previous

system for staged compilation does the same. It appears to the author that the main missing

component in previous systems is dependent types at the meta level, rather than staging operations;

staging operations in 2LTT and MetaOCaml are already quite similar. For example, any interesting

operation on the static-length vectors in Section 2.2 requires meta-level dependent types, even if

the object language is simply typed.

In MetaOCaml, there is a run function for evaluating closed object-level terms, however, this can

fail during staging since closedness is not statically ensured. In our setting, this could be reproduced

in a safe way using a closed modality; this is part of future work.

Additionally, 2LTT only supports two stages, while the other noted systems allow countable

stages. It remains future work to develop NLTT (N-level type theory), but this extension does

appear to be straightforward. In the specification of NLTT, we would simply need to move from

𝑖 ∈ {0, 1} to 𝑖 ∈ N, although in the semantics there could be more subtleties.

Many existing staged systems also support side effects at compile time, while our version of 2LTT

does not. Here, general considerations about the mixing of dependent types and effects should

apply; see e.g. [Pédrot and Tabareau 2020]. However, it should be possible to use standard effect

systems such as monads at the meta level.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

Staged Compilation with Two-Level Type Theory 110:27

8 CONCLUSIONS AND FUTUREWORK
We developed the foundational metatheory of 2LTT as a system of two-stage compilation. We view

the current results as more like a starting point to more thorough investigation into applications

and extensions; in this paper we only sketched these.

We emphasize that variants of 2LTT can serve as languages where staging features can be

practically implemented, and also as metatheories, not only for the formalization for staging

techniques, but also more generally for reasoning about constructions in object languages. This

purpose is prominent in the original 2LTT use case in synthetic homotopy theory. The meta-level

language in a 2LTT can be expressive enough to express general mathematics, and the meta-level

propositional equality – =1 – can be used to prove 𝛽𝜂-equality of object-level types and terms.

For example, we could use object theories as shallowly embedded target languages of optimization

techniques and program translations. In particular, we may choose a low-level object theory without

higher-order functions, and formalize closure conversion as an interpretation of an embedded

meta-level syntax into the object theory.

There is much future work in adapting existing staging techniques to 2LTT (which, as we

mentioned, can double as formalization of said techniques), or adding staging where it has not

been available previously.

• Let-insertion techniques. These allow more precise control over positions of insertion, or

smarter selection of such positions. In 2LTT, meta-level continuation monads could be

employed to adapt some of the features in [Kameyama et al. 2011]. The automatic let-floating

feature of MetaOCaml [Kiselyov and Yallop 2022] requires strengthening of terms, which

is not stable under substitution, but it is stable under weakening, so perhaps it could be

implemented as an “intensional analysis” feature.

• Generic programming with dependent types. There is substantial literature in this area (e.g.

[Chapman et al. 2010; Dagand 2017; Diehl 2017; Löh and Magalhães 2011]), but only in

non-staged settings. 2LTT should immediately yield staging for these techniques, assuming

that the meta level has sufficient type formers (e.g. induction-recursion). We could also try to

adapt previous work on generic treatment of partially static data types [Yallop et al. 2018];

fully internalizing this in 2LTT would also require dependent types.

There are also ways that 2LTT itself could be enhanced.

• More stages, stage polymorphism. Currently, there is substantial code duplication if the object-

level and meta-level languages are similar. Stage polymorphism could help reduce this. A

simple setup could include three stages, the runtime one, the static one, and another one

which supports polymorphism over the first two stages.

• Modalities. We mentioned the closed modality in Section 6. More generally, many multimodal
[Gratzer et al. 2020] type theories could plausibly support staging. 2LTT itself can be viewed

as a very simple multimodal theory with ⇑ as the only modality, which is also degenerate

(because it entails no structural restriction on contexts). We could support multiple object

theories, with modalities for lifting them to the meta level or for representing translations be-

tween them. We could also have modalities for switching between stability under substitution

and stability under weakening.

• Intensional analysis. We only touched on the most basic semantics of intensional analysis

in Section 6. It remains a substantial challenge to work out the practicalities. For good

ergonomics, we would need something like a “pattern matching” operation on object-level

terms, or some induction principle which is more flexible than the plain assumption of

decidable object-level equality.

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

110:28 András Kovács

9 DATA AVAILABILITY STATEMENT
A standalone prototype implementation is available as [Kovács 2022]. It implements elaboration

and staging for a 2LTT. It includes a tutorial and code examples that expand on the contents of

Section 2.

REFERENCES
Andreas Abel and Thierry Coquand. 2007. Untyped Algorithmic Equality for Martin-Löf’s Logical Framework with Surjective

Pairs. Fundam. Informaticae 77, 4 (2007), 345–395. http://content.iospress.com/articles/fundamenta-informaticae/fi77-4-

05

Andreas Abel, Thierry Coquand, and Miguel Pagano. 2011. A Modular Type-checking algorithm for Type Theory with

Singleton Types and Proof Irrelevance. Log. Methods Comput. Sci. 7, 2 (2011). https://doi.org/10.2168/LMCS-7(2:4)2011

Andreas Abel, Joakim Öhman, and Andrea Vezzosi. 2018. Decidability of conversion for type theory in type theory. Proc.
ACM Program. Lang. 2, POPL (2018), 23:1–23:29. https://doi.org/10.1145/3158111

Agda developers. 2022. Agda documentation. https://agda.readthedocs.io/en/v2.6.2.1/

ThorstenAltenkirch andAmbrus Kaposi. 2016. Type theory in type theory using quotient inductive types. In Proceedings of the
43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA,
January 20 - 22, 2016, Rastislav Bodik and Rupak Majumdar (Eds.). ACM, 18–29. https://doi.org/10.1145/2837614.2837638

Thorsten Altenkirch and Ambrus Kaposi. 2017. Normalisation by Evaluation for Type Theory, in Type Theory. Logical
Methods in Computer Science Volume 13, Issue 4 (Oct. 2017). https://doi.org/10.23638/LMCS-13(4:1)2017

Danil Annenkov, Paolo Capriotti, Nicolai Kraus, and Christian Sattler. 2019. Two-Level Type Theory and Applications.

ArXiv e-prints (may 2019). http://arxiv.org/abs/1705.03307

Rafaël Bocquet, Ambrus Kaposi, and Christian Sattler. 2021. Relative induction principles for type theories. arXiv preprint
arXiv:2102.11649 (2021).

Corrado Böhm and Alessandro Berarducci. 1985. Automatic Synthesis of Typed Lambda-Programs on Term Algebras. Theor.
Comput. Sci. 39 (1985), 135–154. https://doi.org/10.1016/0304-3975(85)90135-5

Edwin C. Brady and Kevin Hammond. 2010. Scrapping your inefficient engine: using partial evaluation to improve

domain-specific language implementation. In Proceeding of the 15th ACM SIGPLAN international conference on Functional
programming, ICFP 2010, Baltimore, Maryland, USA, September 27-29, 2010, Paul Hudak and Stephanie Weirich (Eds.).

ACM, 297–308. https://doi.org/10.1145/1863543.1863587

Paolo Capriotti. 2017. Models of type theory with strict equality. arXiv preprint arXiv:1702.04912 (2017).
Simon Castellan, Pierre Clairambault, and Peter Dybjer. 2019. Categories with Families: Unityped, Simply Typed, and

Dependently Typed. CoRR abs/1904.00827 (2019). arXiv:1904.00827 http://arxiv.org/abs/1904.00827

Evan Cavallo, Anders Mörtberg, and Andrew W. Swan. 2020. Unifying Cubical Models of Univalent Type Theory. In

28th EACSL Annual Conference on Computer Science Logic, CSL 2020, January 13-16, 2020, Barcelona, Spain (LIPIcs,
Vol. 152), Maribel Fernández and Anca Muscholl (Eds.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 14:1–14:17.

https://doi.org/10.4230/LIPIcs.CSL.2020.14

James Chapman, Pierre-Évariste Dagand, Conor McBride, and Peter Morris. 2010. The gentle art of levitation. ACM Sigplan
Notices 45, 9 (2010), 3–14.

Thierry Coquand. 1996. An Algorithm for Type-Checking Dependent Types. Sci. Comput. Program. 26, 1-3 (1996), 167–177.
https://doi.org/10.1016/0167-6423(95)00021-6

Thierry Coquand. 2019. Canonicity and normalization for dependent type theory. Theor. Comput. Sci. 777 (2019), 184–191.
https://doi.org/10.1016/j.tcs.2019.01.015

Duncan Coutts, Roman Leshchinskiy, and Don Stewart. 2007. Stream fusion: from lists to streams to nothing at all. In

Proceedings of the 12th ACM SIGPLAN International Conference on Functional Programming, ICFP 2007, Freiburg, Germany,
October 1-3, 2007, Ralf Hinze and Norman Ramsey (Eds.). ACM, 315–326. https://doi.org/10.1145/1291151.1291199

Pierre-Évariste Dagand. 2017. The essence of ornaments. J. Funct. Program. 27 (2017), e9. https://doi.org/10.1017/

S0956796816000356

Olivier Danvy, Karoline Malmkjær, and Jens Palsberg. 1996. Eta-Expansion Does The Trick. ACM Trans. Program. Lang.
Syst. 18, 6 (1996), 730–751. https://doi.org/10.1145/236114.236119

Rowan Davies and Frank Pfenning. 2001. A modal analysis of staged computation. J. ACM 48, 3 (2001), 555–604. https:

//doi.org/10.1145/382780.382785

Larry Diehl. 2017. Fully Generic Programming over Closed Universes of Inductive-Recursive Types. Ph. D. Dissertation. Portland
State University.

Jana Dunfield and Neel Krishnaswami. 2021. Bidirectional Typing. ACM Comput. Surv. 54, 5 (2021), 98:1–98:38. https:

//doi.org/10.1145/3450952

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

http://content.iospress.com/articles/fundamenta-informaticae/fi77-4-05
http://content.iospress.com/articles/fundamenta-informaticae/fi77-4-05
https://doi.org/10.2168/LMCS-7(2:4)2011
https://doi.org/10.1145/3158111
https://agda.readthedocs.io/en/v2.6.2.1/
https://doi.org/10.1145/2837614.2837638
https://doi.org/10.23638/LMCS-13(4:1)2017
http://arxiv.org/abs/1705.03307
https://doi.org/10.1016/0304-3975(85)90135-5
https://doi.org/10.1145/1863543.1863587
https://arxiv.org/abs/1904.00827
http://arxiv.org/abs/1904.00827
https://doi.org/10.4230/LIPIcs.CSL.2020.14
https://doi.org/10.1016/0167-6423(95)00021-6
https://doi.org/10.1016/j.tcs.2019.01.015
https://doi.org/10.1145/1291151.1291199
https://doi.org/10.1017/S0956796816000356
https://doi.org/10.1017/S0956796816000356
https://doi.org/10.1145/236114.236119
https://doi.org/10.1145/382780.382785
https://doi.org/10.1145/382780.382785
https://doi.org/10.1145/3450952
https://doi.org/10.1145/3450952

Staged Compilation with Two-Level Type Theory 110:29

Andrew John Gill, John Launchbury, and Simon L. Peyton Jones. 1993. A Short Cut to Deforestation. In Proceedings of the
conference on Functional programming languages and computer architecture, FPCA 1993, Copenhagen, Denmark, June 9-11,
1993, John Williams (Ed.). ACM, 223–232. https://doi.org/10.1145/165180.165214

Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. 2020. Multimodal Dependent Type Theory. In LICS ’20: 35th
Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, Holger Hermanns,

Lijun Zhang, Naoki Kobayashi, and Dale Miller (Eds.). ACM, 492–506. https://doi.org/10.1145/3373718.3394736

Martin Hofmann. 1995. Extensional concepts in intensional type theory. University of Edinburgh, Department of Computer

Science.

Martin Hofmann. 1997. Syntax and Semantics of Dependent Types. In Semantics and Logics of Computation. Cambridge

University Press, 79–130.

Martin Hofmann. 1999. Semantical Analysis of Higher-Order Abstract Syntax. In 14th Annual IEEE Symposium on Logic in
Computer Science, Trento, Italy, July 2-5, 1999. IEEE Computer Society, 204–213. https://doi.org/10.1109/LICS.1999.782616

Jason Z. S. Hu, Brigitte Pientka, and Ulrich Schöpp. 2022. A Category Theoretic View of Contextual Types: from Simple

Types to Dependent Types. CoRR abs/2206.02831 (2022). https://doi.org/10.48550/arXiv.2206.02831 arXiv:2206.02831

Simon Huber. 2016. Cubical Interpretations of Type Theory. Ph. D. Dissertation. University of Gothenburg.

Junyoung Jang, Samuel Gélineau, Stefan Monnier, and Brigitte Pientka. 2022. Mœbius: metaprogramming using contextual

types: the stage where system f can pattern match on itself. Proc. ACM Program. Lang. 6, POPL (2022), 1–27. https:

//doi.org/10.1145/3498700

Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. 1993. Partial evaluation and automatic program generation. Prentice
Hall.

Yukiyoshi Kameyama, Oleg Kiselyov, and Chung-chieh Shan. 2011. Shifting the stage - Staging with delimited control. J.
Funct. Program. 21, 6 (2011), 617–662. https://doi.org/10.1017/S0956796811000256

Ambrus Kaposi, Simon Huber, and Christian Sattler. 2019a. Gluing for Type Theory. In 4th International Conference on Formal
Structures for Computation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany (LIPIcs, Vol. 131), Herman

Geuvers (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 25:1–25:19. https://doi.org/10.4230/LIPIcs.FSCD.2019.25

Ambrus Kaposi, András Kovács, and Thorsten Altenkirch. 2019b. Constructing quotient inductive-inductive types. Proc.
ACM Program. Lang. 3, POPL (2019), 2:1–2:24. https://doi.org/10.1145/3290315

Akira Kawata and Atsushi Igarashi. 2019. A Dependently Typed Multi-stage Calculus. In Programming Languages and
Systems - 17th Asian Symposium, APLAS 2019, Nusa Dua, Bali, Indonesia, December 1-4, 2019, Proceedings (Lecture Notes in
Computer Science, Vol. 11893), Anthony Widjaja Lin (Ed.). Springer, 53–72. https://doi.org/10.1007/978-3-030-34175-6_4

Oleg Kiselyov. 2014. The Design and Implementation of BER MetaOCaml - System Description. In Functional and Logic
Programming - 12th International Symposium, FLOPS 2014, Kanazawa, Japan, June 4-6, 2014. Proceedings (Lecture Notes in
Computer Science, Vol. 8475), Michael Codish and Eijiro Sumii (Eds.). Springer, 86–102. https://doi.org/10.1007/978-3-319-

07151-0_6

Oleg Kiselyov and Jeremy Yallop. 2022. let (rec) insertion without Effects, Lights or Magic. CoRR abs/2201.00495 (2022).

arXiv:2201.00495 https://arxiv.org/abs/2201.00495

András Kovács. 2022. Demo implementation for the paper "Staged Compilation With Two-Level Type Theory". https:

//doi.org/10.5281/zenodo.6757373

Daniel R. Licata, Ian Orton, Andrew M. Pitts, and Bas Spitters. 2018. Internal Universes in Models of Homotopy Type

Theory. In 3rd International Conference on Formal Structures for Computation and Deduction, FSCD 2018, July 9-12, 2018,
Oxford, UK (LIPIcs, Vol. 108), Hélène Kirchner (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 22:1–22:17.

https://doi.org/10.4230/LIPIcs.FSCD.2018.22

Andres Löh and José Pedro Magalhães. 2011. Generic programming with indexed functors. In Proceedings of the seventh
ACM SIGPLAN workshop on Generic programming, WGP@ICFP 2011, Tokyo, Japan, September 19-21, 2011, Jaakko Järvi

and Shin-Cheng Mu (Eds.). ACM, 1–12. https://doi.org/10.1145/2036918.2036920

Saunders Mac Lane. 1998. Categories for the Working Mathematician (2nd ed.). Springer. http://www.amazon.com/exec/

obidos/redirect?tag=citeulike07-20&path=ASIN/0387984038

Ian Orton and Andrew M. Pitts. 2016. Axioms for Modelling Cubical Type Theory in a Topos. In 25th EACSL Annual
Conference on Computer Science Logic (CSL 2016) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 62),
Jean-Marc Talbot and Laurent Regnier (Eds.). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,

24:1–24:19. https://doi.org/10.4230/LIPIcs.CSL.2016.24

Pierre-Marie Pédrot and Nicolas Tabareau. 2020. The fire triangle: how to mix substitution, dependent elimination, and

effects. Proc. ACM Program. Lang. 4, POPL (2020), 58:1–58:28. https://doi.org/10.1145/3371126

Loïc Pujet and Nicolas Tabareau. 2022. Observational equality: now for good. Proc. ACM Program. Lang. 6, POPL (2022),

1–27. https://doi.org/10.1145/3498693

Tim Sheard and Simon L. Peyton Jones. 2002. Template meta-programming for Haskell. ACM SIGPLAN Notices 37, 12 (2002),
60–75. https://doi.org/10.1145/636517.636528

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

https://doi.org/10.1145/165180.165214
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1109/LICS.1999.782616
https://doi.org/10.48550/arXiv.2206.02831
https://arxiv.org/abs/2206.02831
https://doi.org/10.1145/3498700
https://doi.org/10.1145/3498700
https://doi.org/10.1017/S0956796811000256
https://doi.org/10.4230/LIPIcs.FSCD.2019.25
https://doi.org/10.1145/3290315
https://doi.org/10.1007/978-3-030-34175-6_4
https://doi.org/10.1007/978-3-319-07151-0_6
https://doi.org/10.1007/978-3-319-07151-0_6
https://arxiv.org/abs/2201.00495
https://arxiv.org/abs/2201.00495
https://doi.org/10.5281/zenodo.6757373
https://doi.org/10.5281/zenodo.6757373
https://doi.org/10.4230/LIPIcs.FSCD.2018.22
https://doi.org/10.1145/2036918.2036920
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0387984038
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20&path=ASIN/0387984038
https://doi.org/10.4230/LIPIcs.CSL.2016.24
https://doi.org/10.1145/3371126
https://doi.org/10.1145/3498693
https://doi.org/10.1145/636517.636528

110:30 András Kovács

Jonathan Sterling. 2021. First Steps in Synthetic Tait Computability. Ph. D. Dissertation. Carnegie Mellon University Pittsburgh,

PA.

Jonathan Sterling and Carlo Angiuli. 2021. Normalization for Cubical Type Theory. In 36th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021. IEEE, 1–15. https://doi.org/10.1109/LICS52264.

2021.9470719

Walid Taha and Tim Sheard. 2000. MetaML and multi-stage programming with explicit annotations. Theor. Comput. Sci. 248,
1-2 (2000), 211–242. https://doi.org/10.1016/S0304-3975(00)00053-0

Vladimir Voevodsky. 2013. A simple type system with two identity types. (2013). Unpublished note.

Théo Winterhalter, Matthieu Sozeau, and Nicolas Tabareau. 2019. Eliminating reflection from type theory. In Proceedings of
the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January
14-15, 2019, Assia Mahboubi and Magnus O. Myreen (Eds.). ACM, 91–103. https://doi.org/10.1145/3293880.3294095

Ningning Xie, Matthew Pickering, Andres Löh, Nicolas Wu, Jeremy Yallop, and Meng Wang. 2022. Staging with class: a

specification for typed Template Haskell. Proc. ACM Program. Lang. 6, POPL (2022), 1–30. https://doi.org/10.1145/3498723
Jeremy Yallop, Tamara von Glehn, and Ohad Kammar. 2018. Partially-static data as free extension of algebras. Proc. ACM

Program. Lang. 2, ICFP (2018), 100:1–100:30. https://doi.org/10.1145/3236795

Proc. ACM Program. Lang., Vol. 6, No. ICFP, Article 110. Publication date: August 2022.

https://doi.org/10.1109/LICS52264.2021.9470719
https://doi.org/10.1109/LICS52264.2021.9470719
https://doi.org/10.1016/S0304-3975(00)00053-0
https://doi.org/10.1145/3293880.3294095
https://doi.org/10.1145/3498723
https://doi.org/10.1145/3236795

	Abstract
	1 Introduction
	1.1 Overview & Contributions

	2 A Tour of Two-Level Type Theory
	2.1 Rules of 2LTT
	2.2 Staged Programming in 2LTT
	2.3 Properties of Lifting, Binding Time Improvements
	2.4 Variations of Object-Level Languages

	3 Formal Setup
	3.1 The Algebraic Setting
	3.2 Algorithm Extraction
	3.3 Models and Syntax of 2LTT
	3.4 Models and Syntax of the Object Theory

	4 The Staging Algorithm
	4.1 The Presheaf Model
	4.2 Closed Staging
	4.3 Open Staging, Stability and Strictness
	4.4 Implementation and Efficiency

	5 Soundness of Staging
	5.1 Working in
	5.2 The Restriction Morphism
	5.3 The Logical Relation
	5.4 Soundness

	6 Intensional Analysis
	7 Related Work
	8 Conclusions and Future Work
	9 Data Availability Statement
	References

